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THIS ASSIGNMENT IS NOT MANDATORY.

You are still welcome to attempt it; your mark will be counted only if this results
in an advantage to your overall mark for this class.

If you decide to attempt this assignment, you only need hand in Exercise 1;
however this Exercise relies on some of the results of Exercise 2, so you should at
least take a quick look at Exercise 2 as well (but you are allowed to admit the results
of Exercise 2).

The other exercises are independent from each other (and again they are not
required to get full marks; they are just here for your culture).

Submit your answers in class or to mismet@tcd.ie by Monday February 24, 9AM.

Exercise 1 Submodules and short exact sequences (100 pts)

In this exercise, all modules are over a fixed ring R. We write 0 for the 0 module {0}.
We also denote by 0 the 0 morphism between any two submodules (i.e. the map
taking all the elements of the source module to the 0 element of the target module).

Recall that we saw in class that the decomposability of a module M can be char-
acterised1 by the presence of non-trivial idempotents (meaning T 2 = T ) elements of
End(M). The goal of this exercise is to find a (vaguely) similar characterisation for
reducibility of modules, and to use it to shed new light on the connection between
reducibility and decomposability.

Define an exact sequence as a diagram

· · · −→ Mi−1
fi−→ Mi

fi+1−→ Mi+1 −→ · · ·

where the Mi are modules, the fi are module morphisms, and such that Im fi =
Ker fi+1 for all i.

1. Let · · · −→ Mi−1
fi−→ Mi

fi+1−→ Mi+1 −→ · · · be an exact sequence. Prove that
fi+1 ◦ fi = 0 for all i.

2. Let N,M,Q be modules, and let f : M −→ N and g : M −→ Q be module

morphisms. Prove that 0
0−→ N

f−→ M is an exact sequence if and only if f

is injective. Also prove that M
g−→ Q

0−→ 0 is an exact sequence if and only
if g is surjective.

1If you enjoyed this part of the class, you may also like exercise 3 of this other sheet, which
shows that idempotents can also be used to decompose rings.
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A short exact sequence is an exact sequence of the form

0
0−→ N

f−→ M
g−→ Q

0−→ 0.

By the previous question, this implies that g is surjective and that f is injective.

In particular, it follows that any short exact sequence provides us with the
submodule Im f ≃ N of the middle module M .

3. Prove that conversely, whenever M is a module and N is a submodule, there
exists a short exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

for some module Q, where f is the identity inclusion of N into M .

Hint: Use the exercise on quotient modules.

4. Provide a counterexample to show that however, the existence of a short exact
sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

does NOT imply that M ≃ N ⊕Q as modules.

Hint: Take R = Z and M = Z/4Z.

From now on, we only consider short exact sequences. We say that a short
exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

is left-split if there exists a module morphism f ′ : M −→ N such that f ′ ◦ f =
IdM . We also say that it is right-split if there exists a module morphism
g′ : Q −→ M such that g ◦ g′ = IdM .

5. Let
0

0−→ N
f−→ M

g−→ Q
0−→ 0

be a short exact sequence, so that Im f is a submodule of M . Prove that if
Im f admits a supplement submodule M ′ ⊂ M , then the short exact sequence
above is both left-split and right-split.

Hint: Consider the restriction of g to M ′.

6. Conversely, prove that if the short exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

is left-split, then Im f admits a supplement in M .

Hint: Consider the map T = f ◦ f ′ ∈ End(M).

7. Similarly, prove that if the short exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

is right-split, then Im f admits a supplement in M .

In conclusion, submodules correspond to short exact sequences, and the sub-
module admits a complement iff. the sequence is left-split iff. it is right-split.
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Solution 1

1. Let m ∈ Mi−1. Then fi(m) ∈ Imfi = Ker fi+1 since the sequence is exact, so
fi+1(fi(m)) = 0.

2. The sequence 0
0−→ N

f−→ M is exact iff. Im 0 = Ker f ; but of course Im 0 = 0.

Similarly, M
g−→ Q

0−→ 0 is exact iff. Im g = Ker 0, but of course Ker 0 is the
whole of Q.

3. Take Q to be the quotient moduleM/N , and g the projection fromM toM/N .
Then Ker f = Im0 = 0 as f , the identity inclusion, is injective; Im g = Q =
Ker 0 as g, the projection to the quotient M/N , is surjective by construction;
and finally Im f = N = Ker g by definition of the projection to the quotient
(an element m ∈ M represents 0 ∈ M/N iff. m ∈ N).

4. Take R = Z, M = Z/4Z, and N the submodule 2Z/4Z. Then M/N ≃ Z/2Z
by the isomorphism theorem for modules; however, N ≃ Z/2Z, but Z/4Z is
NOT isomorphic to N ⊕M/N = Z/2Z ⊕ Z/2Z as a Z-module (indeed, they
are not even isomorphic as additive groups, since the former has elements of
order 4 but not the latter).

This should serve as a reminder that a sub-object is not, in general, the same
thing as a quotient!

5. The assumption is that M = Im f ⊕M ′ for some submodule M ′ ⊂ M .

Consider the restriction g|M ′ of g to M ′. This is still a morphism (immediate).
Its kernel is M ′ ∩ Ker g = M ′ ∩ Im f = 0 since the sequence is exact and the
sum is direct. Furthermore, as the sequence is exact, g is surjective, so for
all q ∈ Q we can find m ∈ M such that q = g(m). As M = Im f ⊕ M ′,
we can decompose (uniquelely) m = i + m′ where m′ ∈ M ′ and i ∈ Im f =
Ker g; thus g(m′) = g(m − i) = g(m) − g(i) = q − 0 = q, which shows that
g|M ′ is still surjective. Therefore g|M ′ : M ′ −→ Q is an isomorphism. Let
g′ : Q −→ M ′ ⊂ M be its inverse; then for all q ∈ Q, g′(q) = m′ ∈ M ′ such
that g(m′) = q by definition of g′, so that g(g′(q)) = q. This shows that the
sequence is right-split.

Let us also show that it is left split. As M = Im f ⊕M ′, we can consider the
projector T from M to Im f , i.e. T (m) = i where m = i + m′ is the unique
decomposition of m ∈ M with i ∈ Imf and m′ ∈ M ′. Furthermore, f is
injective by exactness of the sequence, so f corestricts into an isomorphism
between N and Im f . Post-composing T with the inverse of this isomorphism
yields f ′ : M −→ N , which is thus defined by f(m) = n where m = i +m′ is
the unique decomposition of m as above and n ∈ N is the unique element such
that f(n) = i. This map f ′, being a composition of morphisms, is a morphism;
and it satisfies that for all n ∈ N , f ′(f(n)) = f ′(m) where m = f(n) ∈ M
decomposes as m = i + m′ where i = f(n) and m′ = 0, so f ′(f(n)) = n as
required.

6. We are given a morphism f ′ : M −→ N such that f ′ ◦ f = IdN . Consider
T = f ◦ f ′ : M −→ M . This is a morphism (composition of morphisms).
Furthermore T ◦ T = f ◦ f ′ ◦ f ◦ f ′ = T since f ′ ◦ f = IdN , so T is actually a
projector, whence the decomposition M = ImT ⊕KerT of M .
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To conclude, we are going to show that ImT = Im f (so that M ′ = KerT
will serve as a supplement of Im f). Indeed, first of all ImT = f ◦ f ′ ⊆ Im f .
Conversely, let i ∈ Im f , so that i = f(n) for some n ∈ N ; then i = f(n) =
f(f ′(f(n))) = T (f(n)) ∈ ImT as f ′ ◦ f = IdN , which shows the reverse
inclusion Im f ⊆ ImT .

7. Same idea as the previous question: introduce U = g′ ◦g, which is a morphism
from M to itself. From g ◦ g′ = IdQ we infer that U2 = U , whence M =
ImU ⊕ KerU . Next, if m ∈ Im f , then m ∈ Ker g by exactness, so U(m) =
g′(g(m)) = g′(0) = 0, which shows that Im f ⊆ KerU ; and conversely, if
m ∈ Im f , saym = f(n) for some n ∈ N , then U(m) = g′(g(f(n))) = g′(0) = 0
as g ◦ f = 0 by exactness (cf. first question of the exercise), which shows that
Im f ⊆ KerU . In conclusion, Im f = KerU , so M ′ = ImU is a supplement to
Im f .

Exercise 2 Quotient modules

LetR be a ring, and letM be anR-module with addition + :
M ×M −→ M
(m1,m2) 7−→ m1 +m2

and scalar multiplication · : R×M −→ M
(λ,m) 7−→ λ ·m .

Let N ⊂ M be a submodule. Then in particular, N is a subgroup of the
additive group (M,+) which is Abelian, so we have the quotient group M/N =
{m+N | m ∈ M} on which = is still well-defined. It comes with a projection map
M −→ M/N
m 7−→ m+N

which is surjective and whose kernel is N .

1. Prove that M/N is actually still an R-module, by proving that the scalar mul-

tiplication · descends to a well-defined map
R×M/N −→ M/N
(λ,m+N) 7−→ (λ ·m) +N

.

2. Prove the isomorphism theorem for modules: Any module morphism

f : M −→ M ′

induces a module isomorphism M/Ker f ≃ Im f .

Solution 2

1. We must prove that if λ ∈ R and if m,m′ ∈ M are such that m+N = m′+N ,
then (λm) +N = (λm′) +N .

First of all, observe that m + N = m′ + N iff. m and m′ represent the same
element of M/N iff. m′ = m+ n for some n ∈ N .

But then λm′ = λ(m+n) = λm+λn is of the form λm+n′ where n′ = λn ∈ N
sinceN is a submodule, so λm and λm′ do represent the same element ofM/N .

To be complete, we should still check that the module axioms do hold for M/N ,
but they follow immediately from the fact that M itself satisfies them (they are
equalities in M , whcih can be viewed as equalities in M/N).
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2. Let f : M −→ M ′ be a morphism. Then Ker f is a submodule of M , so the
quotient module M/Ker f makes sense by the previous question. Define

f ′ :
M/Ker f −→ Im f
m+Ker f 7−→ f(m).

This is well-defined, because f(m) ∈ ImM for all m ∈ M by definition of the
image, and because if m + Ker f = m′ + Ker f , then m′ = m + k for some
k ∈ Ker f , so f(m′) = f(m + k) = f(m) + f(k) = f(m) + 0 = f(m). It is
also clear that f ′ is a morphism (since f is), and that f ′ is surjective (again
by definition of Im f).

To conclude, we will prove that f ′ is injective, which will show that f ′ is an
isomorphism whose existence we had to establish. Indeed, let m+N ∈ M/N ;
if m+N ∈ Ker f ′, then f(m) = 0 by definition of f ′, so m ∈ Ker f . But then
m = 0 +m ∈ 0 + Ker f , so m+Ker f is actually 0 in M/N . This shows that
Ker f ′ = {0}, so f ′ is injective.

Exercise 3 Preservation of semi-simplicity

In this exercise, all modules are over a fixed ring R, and all modules are Artinian2,
meaning that there cannot exist an infinite descending chain of submodules.

1. Prove that a submodule of a semi-simple module is also semi-simple.

2. Prove that if f : M −→ N is a module morphism, and if M is semi-simple,
then Im f is also semi-simple.

3. Let now G be a group, K a field, and f : V −→ W be a morphism between
representations of G over K of finite degree. Prove that if V is semi-simple,
then so are Ker f and Im f .

Solution 3

We will constantly use the result that a module is semi-simple iff. every submodule
admits a supplement.

1. Let M be a semi-simple module, and let N ⊆ M be a submodule. If P ⊂ N
is a submodule of N , then it is also a submodule of M ; as M is semi-simple,
there exists a submodule S ⊆ M such that M = P ⊕ S, so that every m ∈ M
can be uniqueley decomposed as m = p + s with p ∈ P and s ∈ S. Let
S ′ = S ∩N ; this is a submodule of N . If n ∈ N , then also n ∈ M , so we can
write n = p+ s with unique p ∈ P and s ∈ S. Then s = n− p ∈ N as P ⊆ N ,
so actually s ∈ S ∩N = S ′. This shows that N = P ⊕ S ′, whence the result.

2. Since M is semi-simple, the submodule Ker f ⊆ M admits a supplement M ′.

Restricting f to M ′ and corestricting to Im f yields f ′ = f|M ′ : M ′ −→ Im f ,
which is injective since if m ∈ Ker f ′, then m ∈ Ker f ∩ M ′ whence m = 0,
and surjective, as if n ∈ Im f , then n = f(m) for some m ∈ M , which can be

2NB we make this assumption to make our lives easier, but it can be shown that the properties
established in this exercise actually remain valid without this assumption.
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(uniquely) decomposed as m = k +m′ with k ∈ Ker f and m′ ∈ M ′, but then
n = f(m) = f(k +m′) = f(k) + f(m′) = f(m′) as k ∈ Ker f .

Therefore f ′ is an isomorphism between M ′ and N . As M ′ is semi-simple by
the previous question, so is N .

3. We can view V and W as R-modules where R = K[G], which are Artinian
since a descending chain of submodules would in particular be a descending
chain of K-subspaces, and thus cannot be infinite (consider dimensions); and
we can view f as a module morphism. Then Ker f is a submodule of V , and
is therefore semi-simple by the first question, whereas Im f is a submodule of
W , which is semi-simple by the second question.

Exercise 4 A non-semi-simple ring

Let K be a field, and let G be a finite group of order n = #G. We will sometimes
see the group ring K[G] = {

∑
g∈G λgeg | λg ∈ K for all g ∈ G} as a module over

itself.

1. Let Σ =
∑

g∈G eg ∈ K[G]. Prove that ehΣ = Σ for all h ∈ G.

2. Prove that S = {λΣ, λ ∈ K} is a sub-K[G]-module of K[G].

3. Identify S as a representation of G.

From now on, we assume that n = 0 in K.

4. Prove that Σ2 = 0 in K[G].

5. Deduce that 1 − λΣ is invertible in K[G] for all λ ∈ K, where 1 = e1G is the
multiplicative identity of K[G].

Note that since K[G] is not commutative in general, you must prove that your
inverse works on both sides.

Hint: For x ∈ R and m ∈ N, what is the formula for the geometric series
1 + x+ x2 + · · ·+ xm? How do you prove it?

6. Deduce that K[G], viewed as a K[G]-module, is not semi-simple.

Solution 4

1. For all h ∈ G, we have

ehΣ = eh
∑
g∈G

eg =
∑
g∈G

ehg =
∑
g∈G

eg = Σ

as
G −→ G
g 7−→ hg

is a bijection.

2. For all
∑

g∈G λgeg ∈ K[G] we have(∑
g∈G

λgeg

)
Σ =

∑
g∈G

λg(egΣ) =
∑
g∈G

λgΣ =

(∑
g∈G

λg

)
Σ,

6



which proves that M = {λΣ, λ ∈ K} ⊂ K[G] is closed by multiplication by
all “scalars” in K[G]. Since it is also an additive subgroup of K[G] (and even
a K-subspace), it is a submodule of K[G].

3. We can therefore view M as a representation of G over K. Its degree is
dimK M = 1, and since for all h ∈ G, ehΣ = Σ, we see that G acts trivially on
it. Thus this is the trivial representation 1.

4. We compute that

Σ2 =

(∑
g∈G

eg

)
Σ =

∑
g∈G

egΣ =
∑
g∈G

Σ = nΣ

as we have proved that egΣ = Σ for all g ∈ G in the previous question. As
n = 0 in K and therefore in K[G], the result follows.

5. Expanding shows that (1 − x)(1 + x + x2 + · · · + xn) = 1 − x + x − x2 +
· · · − xn + xn − xn+1 = 1 − xn+1 for all x ∈ R, and in fact this identity
remains valid in any ring, even if it is not commutative, since powers of x and
1 always commute with each other. In particular, for n = 1 we have that
(1− x)(1 + x) = 1− x2, so (1− λΣ)(1 + λΣ) = 1− λ2Σ2 = 1 as Σ2 = 0, and
similarly (1+λΣ)(1−λΣ) = 1−λ2Σ2 = 1. This shows that 1−Σ is invertible
in K[G], with inverse 1 + Σ ∈ K[G].

6. Suppose by contradiction that K[G] is semi-simple. An infinite descending
chain of submodules of K[G] would in particular be a descending chain of
K-subspaces, which cannot exist (consider dimensions). Therefore, the sub-
module M of K[G] would admit a supplement S, that is to say K[G] = M⊕S.
Then we could decompose (uniquely) 1 = m + s with m ∈ M and s ∈ S, so
we would have m = λΣ for some λ ∈ K and s = 1−m = 1− λΣ. As shown
in the previous question, there exists t ∈ K[G] such that ts = 1; but then
Σ = Σ1 = (Σt)s would lie in S since Σt ∈ K[G], s ∈ S, and S is a submodule;
therefore 0 ̸= Σ ∈ M ∩ S, which contradicts K[G] = M ⊕ S as we would have
the two decompositions Σ = Σ + 0 = 0 + Σ.

Exercise 5 Annihilators and simple modules

Let R be a ring, which need not be commutative. We say that I ⊆ R is a left ideal
if it is an additive subgroup of (R,+) and if ri ∈ I for all r ∈ R and i ∈ I. We
define right ideals similarly. If I is both a left ideal and a right ideal, then we say
that it is a two-sided ideal. A maximal left ideal is a left ideal M ̸= R such that
there are no left ideals I such that M ⊊ I ⊊ R.

1. Let M be an R-module. Define its annihilator as

AnnM = {r ∈ R | rm = 0 for all m ∈ M} ⊆ R.

Prove that AnnM is a two-sided ideal of R.
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2. The ring R can be viewed as a module over itself; we denote this module
by RR, so as to clearly distinguish between the ring R and the R-module RR.
Identify the submodules of RR.

3. Let S be a module, and let s ∈ S.

(a) Prove that the map
fs : RR −→ S

r 7−→ rs

is a module morphism.

(b) Prove that S is simple iff. fs is surjective for all s ̸= 0.

(c) Deduce that if S is simple, then it is isomorphic to RR/M , where M is a
maximal left ideal of R.

(d) Prove that conversely, if M is a maximal left ideal of R, then RR/M is a
simple R-module.

4. Beware that in general, the annihilator of RR/M , which is a two-sided ideal,
does not agree with the left ideal M ! Here is an example: Take R = M2(R),
and S = R2, which is an R-module if we view its elements as column vectors.
Prove that S is simple, determine AnnS, and find a maximal left ideal M of R
such that S ≃ RR/M .

Solution 5

1. Let m ∈ M . Then 0m = 0, so 0 ∈ AnnM . Besides, if r, s ∈ AnnM , then
(r − s)m = rm − sm = 0 − 0 = 0, so r − s ∈ AnnM as this holds for any
m ∈ M . Finally, let r ∈ AnnM and x ∈ R. Then (xr)m = x(rm) = x0 = 0,
and (rx)m = r(xm) = 0 as xm ∈ M as M is a module; since these hold for
any m ∈ M , AnnM is a two-sided ideal of R.

2. Let M ⊆ RR be a submodule. Then M ⊆ (R,+) is an additive subgroup, and
besides xm ∈ M for all x ∈ R and m ∈ M , so M is a left ideal. Conversely, we
see that any left ideal of R is actually a submodule of RR. So the submodules
of RR are precisely the left ideals of R.

3. (a) fs is additive since for all r, r
′ ∈ RR = R, f(r+r′) = (r+r′)s = rs+r′s =

f(r) + f(r′), and linear because for all λ ∈ R = RR and r ∈ RR = R,
f(λr) = (λr)s = λ(rs) = λf(rs).

(b) Note that s = fs(1R) ∈ Im fs. So if s ̸= 0, then Im f is a nonzero
submodule of S. So if S is simple, then this submodule must be all of S,
so fs is surjective.

Conversely, suppose that S is not simple. Then it has a non-trivial sub-
module {0} ⊊ T ⊊ S. As T ̸= {0}, we can find 0 ̸= t ∈ T ; then t ∈ S,
and Im ft = {rt, r ∈ R} ⊆ T is strictly smaller that S as it is contained
in T , so ft is not surjective.

(c) As S is simple, S ̸= {0}, so let 0 ̸= s ∈ S. The previous question
ensures that fs is surjective, so the isomorphism theorem for modules
yields S ≃R R/M where M = Ker fs. In particular, M is a submodule
of RR, and therefore a left ideal by the first question.
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If M were not maximal, we could find another ideal (=submodule) M ′

subst that M ⊊ M ′ ⊊ RR, and then M ′/M would be a non-trivial
submodule of R/M , which is absurd as R/M ≃ S is simple, so M must
be maximal.

(d) The submodules of the quotient RR/M are precisely the M ′/M , where
M ′ is a submodule (= left ideal) of RR which contains M . As M is
maximal, there are exactly two such submodules, namlely M and RR, so
correspondingly RR/M has only two submodules, which are M/M = {0}
and RR/M =itself. This shows that RR/M is a simple module.

4. Let e1 =

(
1
0

)
∈ R2, and e2 =

(
0
1

)
∈ R2; recall that for all A ∈ M2(R), Ae1 is

the left column of A, and Ae2 is the right column of A.

Let now 0 ̸= v ∈ R2, and let w ∈ R2. There exists a matrix B ∈ GL2(R)
whose first column is v, so that B−1 takes v to e1, and a matrix C ∈ M2(R)
whose first column is w, so that it takes e1 to w; then A = CB−1 ∈ M2(R)
satisfies Av = w. This shows that the map fv : A 7→ Av is surjective for all
v ̸= 0, so by question 2, R2 is a simple M2(R)-module. Still by question 2, for
any 0 ̸= v ∈ R2, the M2(R)-module R2 is isomorphic to M2(R)/N , where N
is the left ideal {A ∈ M2(R) | Av = 0}. For instance, if we take v = e1, then

N = {A ∈ M2(R) | Ae1 = 0} =

{(
0 x
0 y

) ∣∣∣ x, y ∈ R
}

=

(
0 ∗
0 ∗

)
.

However, AnnR2 is the set of matrices A ∈ M2(R) such that Av = 0 for all
v ∈ R2; taking v to be e1, we get that the left column Ae1 of A must be 0, and
then taking v = e2, we see that the right column of A must also be 0. Thus

AnnR2 = {0} ≠ N.

9


