Group representations Exercise sheet 4

https://www.maths.tcd.ie/~mascotn/teaching/2025/MAU34104/index.html

Version: March 14, 2025

Submit your answers in class or to mismet@tcd.ie by Monday 24 March, 09:00.

Exercise 1 Group theory thanks to representation theory (40 pts)

Let G be a non-Abelian group of order 8. Prove that G has exactly 5 conjugacy classes, and that the Abelianisation $G^{ab} = G/D(G)$ of G must be of order 4. Hint: This exercise is part of an assignment on group representations!

Exercise 2 The character table of A_4 (60 pts)

Let $G = A_4$ be the alternating group of even permutations on 4 objects.

- 1. (12 pts) Let V_4 be the Klein subgroup of A_4 consisting of the double transpositions and of the identity. Prove that V_4 is normal in A_4 , and that A_4/V_4 is cyclic.
- 2. (6 pts) Prove that (123) and (132) are **not** conjugate in A_4 .
- 3. (30 pts) Determine the character table of A_4 . You may want to define $\omega = e^{2\pi i/3}$; note that $\omega^2 = \overline{\omega} = -\omega - 1$.
- 4. (6 pts) Deduce that V_4 is the derived subgroup of A_4 .
- 5. (6 pts) Determine the decomposition into irreducible representations of the restriction to A_4 of each the five irreducible representations of S_4 .
- 6. (Bonus question, 0 pts) We admit that the group of rotations of \mathbb{R}^3 that preserve a regular tetrahedron invariant is isomorphic to A_4 via the permutations induced on the 4 vertices, whence a representation of A_4 of degree 3. Write down the decomposition (over \mathbb{C}) of this representation into irreducible representations.

These were the only mandatory exercises, that you must submit before the deadline. The following exercises are not mandatory; they is not worth any points, and you do not have to submit them. However, I strongly suggest you can try to solve them, as this is excellent practice for the exam. You are welcome to email me if you have questions about them. The solution will be made available with the solution to the mandatory exercises.

Exercise 3 The character table of $C_2 \times C_2$

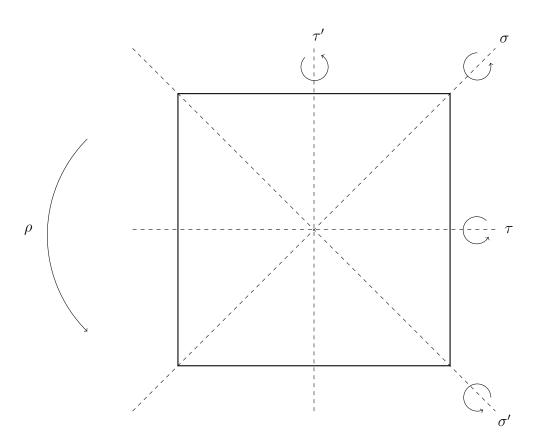
In this exercise, we write C_2 for the group $\mathbb{Z}/2\mathbb{Z}$, and we consider representations of the group

$$G = C_2 \times C_2 = \{(x, y) \mid x \in C_2, y \in C_2\}.$$

- 1. Let χ be an irreducible character of G. Prove that $\chi(g) \in \{+1, -1\}$ for all $g \in G$.
- 2. Write down the character table of G.
- 3. Is any of the irreducible representations of G faithful?
- 4. Does there exist faithful representations of G? If so, what is the smallest possible degree of such a representation?

Exercise 4 The character table of D_8

1. Let $G = D_8$ be the group of symmetries of the square, most of whose elements we name as follows:



Determine the derived subgroup D(G) and the structure of the quotient G/D(G).

2. Determine the character table of D_8 .

For clarity, I personally prefer to write C_n for the group, $\mathbb{Z}/n\mathbb{Z}$ for the ring, and, if n is prime, \mathbb{F}_n for the field.

Exercise 5 The character table of Q_8

Let $Q_8 = \{1, -1, I, -I, J, -J, K, -K\}$ be the (Hamiltonian) quaternionic group, whose multiplication is defined by the rules

For all
$$x, y \in Q_8$$
, $(-x)y = x(-y) = -(xy)$, $x1 = 1x = x$,
$$I^2 = J^2 = K^2 = -1$$
,
$$IJ = K = -JI$$
, $JK = I = -KJ$, $KI = J = -IK$.

- 1. By Exercise 1, Q_8 has exactly 5 conjugacy classes. Check that these classes are $\{1\}$, $\{-1\}$, $\{I, -I\}$, $\{J, -J\}$, and $\{K, -K\}$.
- 2. Determine the centre Z of Q_8 .
- 3. Prove that Q_8/Z is isomorphic to $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.
- 4. Determine the character table of Q_8 . Any comments?
- 5. It is standard to realise Q_8 as a group of 2×2 complex matrices by identifying I with $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, J with $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, and K with $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ (since these matrices satisfy the relations defining the group law of Q_8 , as you may check if you wish). How would you interpret this in terms of the character table of Q_8 ?

Exercise 6 To be or not to be real

Nicolas M., lecturer at a college somewhere in Europe, has been trying to hammer into his students that they must not write things such as

$$(\chi \mid \chi) = \frac{1}{\#G} \sum_{g \in G} \chi(g)^2$$

as this is incorrect since characters are complex-valued, the correct formula being

$$(\chi \mid \chi) = \frac{1}{\#G} \sum_{g \in G} |\chi(g)|^2.$$

However, he admits that it may be misleading that most of the characters in his lectures were real-valued. But how come?

1. Let G be a finite group. Prove that every character of G is real-valued if and only if every $g \in G$ is conjugate to its inverse.

Hint: Recall that $\chi(g^{-1}) = \overline{\chi(g)}$.

2. Let $n \in \mathbb{N}$. Prove that every character of S_n is real-valued. What about A_4 ?

3