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THIS ASSIGNMENT IS NOT MANDATORY.

You are still welcome to attempt it; your mark will be counted only if this results
in an advantage to your overall mark for this class.

If you decide to attempt this assignment, you only need hand in Exercise 1;
however this Exercise relies on some of the results of Exercise 2, so you should at
least take a quick look at Exercise 2 as well (but you are allowed to admit the results
of Exercise 2).

The other exercises are independent from each other (and again they are not
required to get full marks; they are just here for your culture).

Submit your answers in class or to mismet@tcd.ie by Monday February 24, 9AM.

Exercise 1 Submodules and short exact sequences (100 pts)

In this exercise, all modules are over a fixed ring R. We write 0 for the 0 module {0}.
We also denote by 0 the 0 morphism between any two submodules (i.e. the map
taking all the elements of the source module to the 0 element of the target module).

Recall that we saw in class that the decomposability of a module M can be char-
acterised1 by the presence of non-trivial idempotents (meaning T 2 = T ) elements of
End(M). The goal of this exercise is to find a (vaguely) similar characterisation for
reducibility of modules, and to use it to shed new light on the connection between
reducibility and decomposability.

Define an exact sequence as a diagram

· · · −→ Mi−1
fi−→ Mi

fi+1−→ Mi+1 −→ · · ·

where the Mi are modules, the fi are module morphisms, and such that Im fi =
Ker fi+1 for all i.

1. Let · · · −→ Mi−1
fi−→ Mi

fi+1−→ Mi+1 −→ · · · be an exact sequence. Prove that
fi+1 ◦ fi = 0 for all i.

2. Let N,M,Q be modules, and let f : N −→ M and g : M −→ Q be module

morphisms. Prove that 0
0−→ N

f−→ M is an exact sequence if and only if f

is injective. Also prove that M
g−→ Q

0−→ 0 is an exact sequence if and only
if g is surjective.

1If you enjoyed this part of the class, you may also like exercise 3 of this other sheet, which
shows that idempotents can also be used to decompose rings.
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A short exact sequence is an exact sequence of the form

0
0−→ N

f−→ M
g−→ Q

0−→ 0.

By the previous question, this implies that g is surjective and that f is injective.

In particular, it follows that any short exact sequence provides us with the
submodule Im f ≃ N of the middle module M .

3. Prove that conversely, whenever M is a module and N is a submodule, there
exists a short exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

for some module Q, where f is the identity inclusion of N into M .

Hint: Use the exercise on quotient modules.

4. Provide a counterexample to show that however, the existence of a short exact
sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

does NOT imply that M ≃ N ⊕Q as modules.

Hint: Take R = Z and M = Z/4Z.

From now on, we only consider short exact sequences. We say that a short
exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

is left-split if there exists a module morphism f ′ : M −→ N such that f ′ ◦ f =
IdN . We also say that it is right-split if there exists a module morphism
g′ : Q −→ M such that g ◦ g′ = IdQ.

5. Let
0

0−→ N
f−→ M

g−→ Q
0−→ 0

be a short exact sequence, so that Im f is a submodule of M . Prove that if
Im f admits a supplement submodule M ′ ⊂ M , then the short exact sequence
above is both left-split and right-split.

Hint: Consider the restriction of g to M ′.

6. Conversely, prove that if the short exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

is left-split, then Im f admits a supplement in M .

Hint: Consider the map T = f ◦ f ′ ∈ End(M).

7. Similarly, prove that if the short exact sequence

0
0−→ N

f−→ M
g−→ Q

0−→ 0

is right-split, then Im f admits a supplement in M .

In conclusion, submodules correspond to short exact sequences, and the sub-
module admits a complement iff. the sequence is left-split iff. it is right-split.
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Exercise 2 Quotient modules

LetR be a ring, and letM be anR-module with addition + :
M ×M −→ M
(m1,m2) 7−→ m1 +m2

and scalar multiplication · : R×M −→ M
(λ,m) 7−→ λ ·m .

Let N ⊂ M be a submodule. Then in particular, N is a subgroup of the
additive group (M,+) which is Abelian, so we have the quotient group M/N =
{m+N | m ∈ M} on which = is still well-defined. It comes with a projection map
M −→ M/N
m 7−→ m+N

which is surjective and whose kernel is N .

1. Prove that M/N is actually still an R-module, by proving that the scalar mul-

tiplication · descends to a well-defined map
R×M/N −→ M/N
(λ,m+N) 7−→ (λ ·m) +N

.

2. Prove the isomorphism theorem for modules: Any module morphism

f : M −→ M ′

induces a module isomorphism M/Ker f ≃ Im f .

Exercise 3 Preservation of semi-simplicity

In this exercise, all modules are over a fixed ring R, and all modules are Artinian2,
meaning that there cannot exist an infinite descending chain of submodules.

1. Prove that a submodule of a semi-simple module is also semi-simple.

2. Prove that if f : M −→ N is a module morphism, and if M is semi-simple,
then Im f is also semi-simple.

3. Let now G be a group, K a field, and f : V −→ W be a morphism between
representations of G over K of finite degree. Prove that if V is semi-simple,
then so are Ker f and Im f .

Exercise 4 A non-semi-simple ring

Let K be a field, and let G be a finite group of order n = #G. We will sometimes
see the group ring K[G] = {

∑
g∈G λgeg | λg ∈ K for all g ∈ G} as a module over

itself.

1. Let Σ =
∑

g∈G eg ∈ K[G]. Prove that ehΣ = Σ for all h ∈ G.

2. Prove that S = {λΣ, λ ∈ K} is a sub-K[G]-module of K[G].

3. Identify S as a representation of G.

From now on, we assume that n = 0 in K.

4. Prove that Σ2 = 0 in K[G].

2NB we make this assumption to make our lives easier, but it can be shown that the properties
established in this exercise actually remain valid without this assumption.
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5. Deduce that 1 − λΣ is invertible in K[G] for all λ ∈ K, where 1 = e1G is the
multiplicative identity of K[G].

Note that since K[G] is not commutative in general, you must prove that your
inverse works on both sides.

Hint: For x ∈ R and m ∈ N, what is the formula for the geometric series
1 + x+ x2 + · · ·+ xm? How do you prove it?

6. Deduce that K[G], viewed as a K[G]-module, is not semi-simple.

Exercise 5 Annihilators and simple modules

Let R be a ring, which need not be commutative. We say that I ⊆ R is a left ideal
if it is an additive subgroup of (R,+) and if ri ∈ I for all r ∈ R and i ∈ I. We
define right ideals similarly. If I is both a left ideal and a right ideal, then we say
that it is a two-sided ideal. A maximal left ideal is a left ideal M ̸= R such that
there are no left ideals I such that M ⊊ I ⊊ R.

1. Let M be an R-module. Define its annihilator as

AnnM = {r ∈ R | rm = 0 for all m ∈ M} ⊆ R.

Prove that AnnM is a two-sided ideal of R.

2. The ring R can be viewed as a module over itself; we denote this module
by RR, so as to clearly distinguish between the ring R and the R-module RR.
Identify the submodules of RR.

3. Let S be a module, and let s ∈ S.

(a) Prove that the map
fs : RR −→ S

r 7−→ rs

is a module morphism.

(b) Prove that S is simple iff. fs is surjective for all s ̸= 0.

(c) Deduce that if S is simple, then it is isomorphic to RR/M , where M is a
maximal left ideal of R.

(d) Prove that conversely, if M is a maximal left ideal of R, then RR/M is a
simple R-module.

4. Beware that in general, the annihilator of RR/M , which is a two-sided ideal,
does not agree with the left ideal M ! Here is an example: Take R = M2(R),
and S = R2, which is an R-module if we view its elements as column vectors.
Prove that S is simple, determine AnnS, and find a maximal left ideal M of R
such that S ≃ RR/M .
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