Algebraic number theory — Exercise sheet 5 (optional)

https://www.maths.tcd.ie/~mascotn/teaching/2022/MAU34109/index.html

Version: November 22, 2022

Exercise 5.1: Units in a real quadratic field

Let $K = \mathbb{Q}(\sqrt{42})$, viewed as a subfield of \mathbb{R} .

- 1. Find a fundamental unit ε in K such that $\varepsilon > 1$.
- Prove that the equation x² − 42y² = −1 has no solutions in integers.
 Hint: Write down generators for Z[×]_K. What are their norms?
 We now wish to determine the class group Cl(K) of K.
- 3. First of all, prove that it is generated by the image of the prime \mathfrak{p}_2 above 2, and that this image has order at most 2 in $\operatorname{Cl}(K)$.
- 4. We want to prove that \mathfrak{p}_2 is not principal. Suppose by contradiction that it is, and let $\gamma = x + y\sqrt{42}$ be a generator. Explain why we may assume that $\frac{1}{\sqrt{\varepsilon}} \leq \gamma \leq \sqrt{\varepsilon}$, and deduce that |y| < 2.
- 5. Prove that $\operatorname{Cl}(K) \simeq \mathbb{Z}/2\mathbb{Z}$.

Solution 5.1:

- 1. We have $\mathbb{Z}_K = \mathbb{Z}[\sqrt{42}]$. The norm of the generic element $x + y\sqrt{42} \in \mathbb{Z}_K$ is $x^2 42y^2$, so units in K correspond to the pairs of integers (x, y) such that $x^2 42y^2 = \pm 1$, and we know that the pair with the smallest nonzero y corresponds to a fundamental unit. For y = 1, we get $x^2 = 41$ or 43, which has no solution in integers. But for y = 2, we find that $13^2 42 \cdot 2^2 = 1$, so we find the fundamental unit $\varepsilon = 13 + 2\sqrt{42}$, which clearly satisfies $\varepsilon > 1$.
- 2. This amounts to proving that there is no element of norm -1 in \mathbb{Z}_K . Such an element would be a unit, so let us take a look at \mathbb{Z}_K^{\times} .

Since K is a subfield of \mathbb{R} , W_K is reduced to $\{\pm 1\}$, so \mathbb{Z}_K^{\times} is generated by the root of unity -1 and by the fundamental unit ε .

We observe that $N_{\mathbb{Q}}^{K}(-1) = (-1)^{2} = +1$, and that $N_{\mathbb{Q}}^{K}(\varepsilon) = 13^{2} - 42 \cdot 2^{2} = +1$ as well. Since these two units generate \mathbb{Z}_{K}^{\times} , this means that every unit in K has norm +1, so there are indeed no units of norm -1 in K.

3. The discriminant of K is $2^2 \cdot 42$ and its signature is (2,0), so the Minkowski bound is

$$M_K = \frac{2!}{2^2}\sqrt{2^2 \cdot 42} = \sqrt{42} < 7$$

which means that Cl(K) is generated by the primes above 2, 3, and 5.

Now 2 and 3 both divide disc K, so they ramify, say $(2) = \mathfrak{p}_2^2$ and $(3) = \mathfrak{p}_3^2$, whereas 5 is inert in K since 2 is a nonzero nonsquare mod 5. So $\operatorname{Cl}(K)$ is generated by $[\mathfrak{p}_2]$ and $[\mathfrak{p}_3]$, and we have the relations $[\mathfrak{p}_2]^2 = [\mathfrak{p}_3]^2 = 1$.

We now try to find a relation between $[\mathfrak{p}_2]$ and $[\mathfrak{p}_3]$. For this, we need to find an element of \mathbb{Z}_K of norm $\pm 2 \cdot 3$, that is to say a pair of integers (x, y) such that $x^2 - 42y^2 = \pm 6$. We spot the solution x = 6, y = 1, which tells us that $6 + \sqrt{42}$ has norm -6, so that the ideal $(6 + \sqrt{42})$ factors as $\mathfrak{p}_2\mathfrak{p}_3$. This yields the relation $[\mathfrak{p}_2][\mathfrak{p}_3] = 1$ in $\operatorname{Cl}(K)$, which shows that $\operatorname{Cl}(K)$ is generated by $[\mathfrak{p}_2]$ alone. Besides, the relation $[\mathfrak{p}_2]^2 = 1$ tells us that the order of $[\mathfrak{p}_2]$ is at most 2.

4. After replacing γ with $\pm \varepsilon^n \gamma$ for some $n \in \mathbb{Z}$, which is legitimate as it is associate to γ and therefore generates the same ideal, we may assume that $\gamma > 0$ (thanks to the \pm) and that $\frac{1}{\sqrt{\varepsilon}} \leq \gamma \leq \sqrt{\varepsilon}$ (by adjusting n).

Write $\gamma = x + y\sqrt{42}$. Since γ generates \mathfrak{p}_2 , which has norm 2, γ must have norm ± 2 , whence $\pm 2 = (x + y\sqrt{42})(x - y\sqrt{42})$. Thus

$$|2y\sqrt{42}| = |(x+y\sqrt{42}) - (x-y\sqrt{42})| = \left|\gamma \pm \frac{2}{\gamma}\right| \le 3\sqrt{\varepsilon},$$

 \mathbf{SO}

$$|y| \le \frac{3\sqrt{\varepsilon}}{2\sqrt{42}} < \frac{3\sqrt{13+2\cdot7}}{2\sqrt{42}} = \frac{9}{2\sqrt{14}} < \frac{9}{6} < 2$$

5. Since $\gamma \in \mathbb{Z}_K = \mathbb{Z}[\sqrt{42}]$, y is an integer, so it must be 0 of ±1. However, the equation $x^2 - 42y^2 = \pm 2$ has no integer solutions with such y, which contradicts our assumption that \mathfrak{p}_2 is principal. So $[\mathfrak{p}_2] \neq 1$, so $[\mathfrak{p}_2]$ has order exactly 2, and therefore

$$\operatorname{Cl}(K) = \langle [\mathfrak{p}_2] \rangle \simeq \mathbb{Z}/2\mathbb{Z}.$$

Exercise 5.2: Arbitrary unit groups

- 1. Prove that there is no number field K such that the unit group \mathbb{Z}_{K}^{\times} is isomorphic to $\mathbb{Z}/50\mathbb{Z} \times \mathbb{Z}^{10}$.
- 2. Find a number field K such that $\mathbb{Z}_K \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$.

Solution 5.2:

1. Let K be such a number field. Then K contains a primitive 50th root of unity ζ_{50} , so $\mathbb{Q}(\zeta_{50})$ is a subfield of K isomorphic to the 50th cyclotomic field. Therefore, the degree of K is a multiple of $\varphi(50) = \varphi(2 \cdot 5^2) = 20$, say 20k with $k \in \mathbb{Z}_{\geq 1}$. Moreover, K is totally complex since it contains non-trivial roots of unity. So the signature of K is (0, 10k), and by Dirichlet's theorem, the rank of \mathbb{Z}_K^{\times} is 10k - 1, which cannot equal 10. 2. By the same analysis as above, such a number field must contain $\mathbb{Q}(\zeta_4) = \mathbb{Q}(i)$ and have degree 4 and signature (0, 2). Moreover, such a field satisfies the required property, unless it has too many roots of unity. By listing the $n \in \mathbb{N}$ such that $\phi(4n) = 4$, we see that it is enough to find such a K that is not isomorphic to $\mathbb{Q}(\zeta_8)$ nor $\mathbb{Q}(\zeta_{12})$.

Let $K = \mathbb{Q}(i, \sqrt{5}) \subset \mathbb{C}$. Then the inclusions

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{5}) \subset K = \mathbb{Q}(\sqrt{5})(i)$$

and the fact that $\mathbb{Q}(\sqrt{5})$ has not 4th root of unity since it admits real embeddings prove that K has degree 4. Besides, $\mathbb{Q}(\sqrt{5})$ is ramified at 5, so K itself is ramified at 5 and is therefore not isomorphic to $\mathbb{Q}(\zeta_8)$ or $\mathbb{Q}(\zeta_{12})$. So $\mathbb{Z}_K^{\times} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}$.

Exercise 5.3: A lower bound on the regulator

Let K be a number field of degree 3 such that disc K < 0.

- 1. Prove that the signature of K is (1, 1).
- 2. From now on, we let σ be the unique real embedding of K. Prove that there exists $\varepsilon \in K$ such that $\mathbb{Z}_{K}^{\times} = \{\pm \varepsilon^{n}, n \in \mathbb{Z}\}$ and that $\sigma(\varepsilon) > 1$, and that such an ε is unique.
- 3. Prove that ε is a primitive element for K, and deduce that the minimal polynomial of ε factors over \mathbb{R} as $(x \sigma(\varepsilon))(x u^{-1}e^{i\theta})(x u^{-1}e^{-i\theta})$ for some $\theta \in \mathbb{R}$, where $u = \sqrt{\sigma(\varepsilon)}$.
- 4. Using without proof the fact that

$$\left(\frac{u^3 + u^{-3}}{2} - \cos\theta\right)^2 \sin^2\theta < \frac{u^6}{4} + \frac{3}{2}$$

for all $\theta \in \mathbb{R}$ (you are **NOT** required to prove this), prove that

$$\sigma(\varepsilon) > \sqrt[3]{\frac{|\operatorname{disc} K|}{4} - 6}.$$

Hint: Prove that

disc
$$\mathbb{Z}[\varepsilon] = -16 \left(\frac{u^3 + u^{-3}}{2} - \cos\theta\right)^2 \sin^2\theta.$$

- 5. As an application, we want to find a fundamental unit in $K = \mathbb{Q}(\alpha)$ where α is a root of $f(x) = x^3 + 4x + 2$. We admit without proof that the only real root of f(x) is approximately -0.473, and still denote by σ the corresponding embedding of K into \mathbb{R} .
 - (a) By taking a look at the decomposition of $2\mathbb{Z}_K$, find a unit $u \in \mathbb{Z}_K^{\times}$ such that $\sigma(u) > 1$.
 - (b) Prove that u is either a fundamental unit or the square of a fundamental unit.
 - (c) By reducing u mod one of the primes above 3, prove that u is actually a fundamental unit.
 - (d) What is the regulator of K?

Solution 5.3:

- 1. Let (r_1, r_2) be the signature of K, so that $r_1 + 2r_2 = 3$. Since disc K < 0 has the same sign as $(-1)^{r_2}$, we see that r_2 is odd. This forces $r_1 = r_2 = 1$.
- 2. Since K has a real embedding, the group of roots of unity in K is $W_K = \{\pm 1\}$. By Dirichlet's theorem, the rank of the unit group is $r_1 + r_2 - 1 = 1$. Let ε be a fundamental unit of \mathbb{Z}_K^{\times} . Then we have

$$\mathbb{Z}_K^{\times} = \{ \pm \varepsilon^n \colon n \in \mathbb{Z} \}.$$

The other fundamental units are the $\pm \varepsilon^{\pm 1}$, and as $\sigma(\varepsilon) \neq \pm 1$ as $\varepsilon \neq \pm 1$, exactly one of these has it image by σ in the interval $(1, \infty)$.

3. Since \mathbb{Z} does not have any unit of infinite order, $\varepsilon \notin \mathbb{Q}$. So the field $\mathbb{Q}(\varepsilon) \subset K$ is not \mathbb{Q} , but its degree over \mathbb{Q} divides that of K, which is 3. So $[\mathbb{Q}(\varepsilon) : \mathbb{Q}] = 3$ and $\mathbb{Q}(\varepsilon) = K$, which means precisely that ε is a primitive element of K.

Let P be the minimal polynomial of ε over \mathbb{Q} . Since ε is a primitive element of K, the polynomial P has degree 3, is irreducible over \mathbb{Q} , and has one real root and two conjugate complex roots since the signature of K is (1, 1). The real root is $\sigma(\varepsilon)$, and let z, \overline{z} be the complex roots. Since ε is a unit, it has norm ± 1 . This norm is also the product of the complex embeddings of ε , so

$$\pm 1 = \sigma(\varepsilon) z \overline{z} = \sigma(\varepsilon) |z|^2 > 0$$
, so $\sigma(\varepsilon) |z|^2 = 1$.

We get $|z|^2 = \sigma(\varepsilon)^{-1}$, so the polar decomposition of z is $z = u^{-1}e^{i\theta}$ with $u = \sqrt{\sigma(\varepsilon)}$ and $\theta \in \mathbb{R}$.

4. Since ε is a primitive element of K and is an algebraic integer, $\mathbb{Z}[\varepsilon]$ is an order in K, so $|\operatorname{disc} K| \leq |\operatorname{disc} \mathbb{Z}[\varepsilon]| = |\operatorname{disc} P|$. We compute

disc
$$P = \left[(\sigma(\varepsilon) - u^{-1}e^{i\theta})(\sigma(\varepsilon) - u^{-1}e^{-i\theta})(u^{-1}e^{i\theta} - u^{-1}e^{-i\theta}) \right]^2$$

 $= \left[(\sigma(\varepsilon)^2 - 2\sigma(\varepsilon)u^{-1}\cos\theta + u^{-2})u^{-1}2i\sin\theta \right]^2$
 $= -16\left(\frac{u^3 + u^{-3}}{2} - \cos\theta\right)^2\sin^2\theta$, since $u^2 = \sigma(\varepsilon)$.

Taking absolute values, we have

disc
$$K| \leq |\operatorname{disc} P|$$

 $< 16\left(\frac{u^6}{4} + \frac{3}{2}\right)$
 $= 4(\sigma(\varepsilon)^3 + 6).$

Dividing by 4, subtracting 6 and taking cube roots, we obtain

$$\sigma(\varepsilon) > \sqrt[3]{\frac{|\operatorname{disc} K|}{4} - 6}.$$

5. (a) First of all, f(x) is irreducible over \mathbb{Q} since it is Eisenstein at p = 2, so K is well-defined and has degree 3. Furthermore, since we are told that f(x) has only one real root, the signature of K is (1, 1), so we can apply the previous questions to K.

Next, we compute that disc $f = -4 \cdot 4^3 - 27 \cdot 2^2 = -364$ (which is negative, confirming that sign K = (1, 1)), which factors as $-2^2 \cdot 7 \cdot 13$. Since f(x) is Eisenstein at p = 2, the ring of integers of K is thus $\mathbb{Z}_K = \mathbb{Z}[\alpha]$.

Finally, since f(x) is Eisenstein at p = 2, 2 is totally ramified in K, and more specifically $(2) = \mathfrak{p}^3$ where $\mathfrak{p} = (2, \alpha)$ has norm 2^1 . But $N_{\mathbb{Q}}^K(\alpha) = -2$ from the constant coefficient of f(x), so actually $\mathfrak{p} = (\alpha)$.

It follows that $(2) = (\alpha)^3 = (\alpha^3)$, so $u_1 = \alpha^3/2 = -2\alpha + 1$ is a unit.

We have $\sigma(u_1) = -2y - 1 \approx -0.054$, so $u = -1/u_1$ is a unit with $\sigma(u) = -1/(-2y - 1) \approx 18.5 > 1$.

- (b) Since $\mathbb{Z}_{K}^{\times} = \{\pm \varepsilon^{n}, n \in \mathbb{Z}\}$ and $\sigma(u) > 1$, we must have $u = +\varepsilon^{n}$ for some integer $n \ge 1$. In particular, $\sigma(u) = \sigma(\varepsilon)^{n}$. But the lower bound from question 4. tells us that $\sigma(\varepsilon) > \sqrt[3]{\frac{364}{4} 6} \approx 4.4$, whence $n \le 2$ since $4.4^{3} > 18.5$.
- (c) We find that x = -1 is a root of $f(x) \mod 3$. As $\mathbb{Z}_K = \mathbb{Z}[\alpha]$, we deduce that $\mathfrak{q} = (3, \alpha + 1)$ is a prime ideal above p = 3 such that $\mathbb{Z}_K/\mathfrak{q} \simeq \mathbb{Z}/3\mathbb{Z}$, the reduction being such that $\alpha \equiv -1 \mod \mathfrak{q}$. In particular, $u_1 \equiv -2 \times -1 - 1 = 1 \mod \mathfrak{q}$, so $u = -1/u_1 \equiv -1/1 =$

In particular, $u_1 = 2 \times 1$ if $1 = 1 \mod q$, so $u = 1/u_1 = 1/1 = -1 \mod q$. $-1 \mod q$. But -1 is not a square in $\mathbb{Z}_K/\mathfrak{q} \simeq \mathbb{Z}/3\mathbb{Z}$, so u is anot a square mod \mathfrak{q} . Therefore u cannot be a square in \mathbb{Z}_K , so we cannot have n = 2 in $u = \varepsilon^n$. As $n \leq 2$, this forces n = 1, so $u = \varepsilon$ is a fundamental unit of K.

(d) Let $\tau, \bar{\tau}$ be the other complex embeddings of K. By definiton, the regulator R_K of K is the absolute value of the determinant of

$$\left(\begin{array}{c} \log |\sigma(\varepsilon)| \\ 2\log |\tau(\varepsilon)| \end{array}\right)$$

with any one row deleted. Therefore

$$R_K = |\log |\sigma(\varepsilon)|| = |\log |1/(2y+1)|| = |\log |2y+1|| \approx 2.9.$$

Exercise 5.4: Units in a real cubic field

For this exercise, you will need a calculator so as to compute complex embeddings explicitly. Do not worry about accuracy issues.

Let $K = \mathbb{Q}(\alpha)$, where α is a root of $f(x) = x^3 - 12x + 6$. You will need to know the following:

- The roots of f are approximately -3.69, 0.511, and 3.18.
- f Assumes the following values:

- The regulator of K is¹ approximately 21.
- 1. Prove that f is irreducible over \mathbb{Q} , and that $\mathbb{Z}_K = \mathbb{Z}[\alpha]$.
- 2. Determine W_K and the rank of \mathbb{Z}_K^{\times} .
- 3. Determine explicitly the decomposition of 2, 3, and 5 in K.
- 4. Use the formula $N_{\mathbb{Q}}^{K}(\alpha + n) = -f(-n)$ to prove that $\alpha 3$ generates the prime above 3. Explain how to use this to discover that $u = (\alpha 3)^3/3$ is a unit in K.
- 5. Factor the ideals $(\alpha 1)$ and $(\alpha + 4)$ into primes. Use this to find a generator γ for the prime above 2, and deduce that $v = \gamma^3/2$ is also a unit in K.

I recommend you **NOT** to try to express γ and v as polynomials in α .

- 6. Compute approximately the regulator of $\{u, v\}$.
- 7. Let U be the subgroup of \mathbb{Z}_{K}^{\times} generated by W_{K} , u, and v. Is U equal to \mathbb{Z}_{K}^{\times} ? What is the (possibly infinite) index of U in \mathbb{Z}_{K}^{\times} ?
- 8. Compute the factorisation of the ideal (α) into primes, and use it to find a third unit $w \in \mathbb{Z}_{K}^{\times}$.
- 9. Prove that $\{u, w\}$ is a system of fundamental units for K.
- 10. Use the logarithmic embedding to conjecture a simple expression for v in terms of u and w (you do not have to prove that your conjecture is correct). Is your guess compatible with question 7?

¹I determined this using a computer and methods beyond the scope of this class.

Solution 5.4:

1. f is Eisenstein at 2 (and also at 3), so it is irreducible over \mathbb{Q} and K is welldefined up to isomorphism. Besides, f is monic and in $\mathbb{Z}[x]$, so $\alpha \in \mathbb{Z}_K$ and therefore $\mathbb{Z}[\alpha]$ is an order of discriminant

disc $f = -4 \cdot (-12)^3 - 27 \cdot (-6)^2 = 2^8 \cdot 3^3 - 2^2 \cdot 3^5 = 2^2 \cdot 3^3 \cdot (2^6 - 3^2) = 2^2 \cdot 3^3 \cdot 5 \cdot 11.$

We see from this factorisation that the index of $\mathbb{Z}[\alpha]$ in \mathbb{Z}_K must divide 6. However, it is also coprime with 2 and 3 since f is Eisenstein at these primes, so this index is 1 and $\mathbb{Z}_K = \mathbb{Z}[\alpha]$.

- 2. Since f(x) has three real roots, K has signature (3,0) (one could also see this from the fact that disc K > 0). In particular, K is embeddable into \mathbb{R} (in three different ways), so W_K is reduced to $\{\pm 1\}$. As for the rank of \mathbb{Z}_K^{\times} , it is 3 + 0 1 = 2 by Dirichlet's theorem.
- 3. As $\mathbb{Z}_K = \mathbb{Z}[\alpha]$, we can determine the decomposition of any prime $p \in \mathbb{N}$ by factoring $f \mod p$. Now f is Eisenstein at 2, so 2 is totally ramified in K, namely $(2) = \mathfrak{p}_2^3$ where $\mathfrak{p}_2 = (2, \alpha)$ has norm 2. For the same reason, $(3) = \mathfrak{p}_3^3$, where $\mathfrak{p}_3 = (3, \alpha)^3$ has norm 3. Finally, we know that 5 ramifies in K since it divides disc $K = \operatorname{disc} \mathbb{Z}[\alpha]$. From the table of values of f, we spot that 1 and 2 are the only roots of $f \mod 5$, so $f \equiv (x-1)^2(x-2)$ or $(x-1)(x-2)^2$ mod 5. Since $f' = 3(x^2 - 4)$ vanishes mod 5 at 2 but not at 1, we have in fact $f \equiv (x-1)(x-2)^2 \mod 5$, whence $(5) = \mathfrak{p}_5\mathfrak{q}_5^2$, where $\mathfrak{p}_5 = (5, \alpha - 1)$ and $\mathfrak{q}_5 = (5, \alpha - 2)$ both have norm 5.
- 4. We get from the table that $N_{\mathbb{Q}}^{K}(\alpha 3) = -f(3) = 3$, so $(\alpha 3)$ is an ideal of norm 3, which can only be \mathfrak{p}_{3} given the decomposition of 3 in K. Therefore $(3) = \mathfrak{p}_{3}^{3} = (\alpha 3)^{3} = ((\alpha 3)^{3})$, so 3 and $(\alpha 3)^{3}$ are associate in \mathbb{Z}_{K} .
- 5. From the table, $N_{\mathbb{Q}}^{K}(\alpha-1) = -f(1) = -5$, so $(\alpha+1)$ is an ideal of norm 5 and is thus either \mathfrak{p}_{5} or \mathfrak{q}_{5} . But $\alpha-1 \in \mathfrak{p}_{5}$, so $\mathfrak{p}_{5} \mid (\alpha-1)$ and so $(\alpha-1) = \mathfrak{p}_{5}$. Similarly, $N_{\mathbb{Q}}^{K}(\alpha+4) = -f(-4) = 10$, so $(\alpha+4)$ has norm 10 and must thus factor either as $\mathfrak{p}_{2}\mathfrak{p}_{5}$ or as $\mathfrak{p}_{2}\mathfrak{q}_{5}$, but $\alpha+4 = \alpha-1+5 \in \mathfrak{p}_{5}$ so $\mathfrak{p}_{5} \mid (\alpha+4)$ so actually $(\alpha+4) = \mathfrak{p}_{2}\mathfrak{p}_{5}$.

We deduce that $\gamma = \frac{\alpha+4}{\alpha-1}$ satisfies $(\gamma) = \mathfrak{p}_2$ (as fractional ideals, so also as integral ideals; in particular $\gamma \in \mathbb{Z}_K$).

Then as in the previous question we get $(2) = \mathfrak{p}_2^3 = (\gamma)^3 = (\gamma^3)$, so 2 and γ^3 are associate in \mathbb{Z}_K .

6. The regulator of $\{u, v\}$ is well-defined since we have seen that \mathbb{Z}_K^{\times} has rank 2.

In order to evaluate it, we need to approximate $\mathcal{L}(u)$ and $\mathcal{L}(v)$, where \mathcal{L} is the logarithmic embedding. Let $\alpha_1 \approx -3.69$, $\alpha_2 \approx 0.511$, and $\alpha_3 \approx 3.28$ be the roots of f, and let $\sigma_1, \sigma_2, \sigma_3$ be the corresponding embeddings of K into \mathbb{R} ; then $\mathcal{L}(\varepsilon) = (\log |\sigma_k(\varepsilon)|)_{k=1,2,3}$ for all $\varepsilon \in \mathbb{Z}_K^{\times}$. Therefore

$$\mathcal{L}(u) = \left(\log \left| \sigma_k \left(\frac{(\alpha - 3)^3}{3} \right) \right| \right)_{k=1,2,3} = \left(\log \left| \frac{(\alpha_k - 3)^3}{3} \right| \right)_{k=1,2,3} \approx (4.60, 1.64, -6.24)$$

and

$$\mathcal{L}(v) = \left(\log\left|\sigma_k\left(\frac{\gamma^3}{2}\right)\right|\right)_{k=1,2,3} = \left(\log\left|\frac{\left(\frac{\alpha_k+4}{\alpha_k-1}\right)^3}{2}\right|\right)_{k=1,2,3} \approx (-8.84, 5.97, 2.88).$$

Deleting any row from

$$R = \left(\begin{array}{rrr} 4.60 & -8.84\\ 1.64 & 5.97\\ -6.24 & 2.88 \end{array}\right)$$

and taking the absolute value of the determinant of the resulting matrix yields $\operatorname{Reg}(\{u, v\}) \approx 42.$

- 7. The regulator of $\{u, v\}$ is approximately twice that of K, so U is a strict subgroup of \mathbb{Z}_{K}^{\times} of index 2.
- 8. $N_{\mathbb{Q}}^{K}(\alpha) = -f(0) = -6$, so (α) has norm $6 = 2 \cdot 3$. Therefore $(\alpha) = \mathfrak{p}_{2}\mathfrak{p}_{3}$. Hence $(6) = (2)(3) = \mathfrak{p}_{2}^{3}\mathfrak{p}_{3}^{3} = (\alpha)^{3} = (\alpha^{3})$, so 6 and α^{3} are associate in \mathbb{Z}_{K} and we may take $w = \alpha^{3}/6 = 2\alpha - 1$.

Alternatively, we can say that $(\alpha) = \mathfrak{p}_2 \mathfrak{p}_3 = (\gamma)(\alpha - 3)$ and take $w' = \frac{\alpha}{\gamma(\alpha - 3)} = \frac{\alpha(\alpha - 1)}{(\alpha - 3)(\alpha + 4)}$; this does not matter since it turns out that w' = w.

9. We evaluate

$$\mathcal{L}(w) = (\log |\sigma_k (2\alpha - 1)|)_{k=1,2,3} = (\log |2\alpha_k - 1|)_{k=1,2,3} \approx (2.12, -3.82, 1.68).$$

Thus the regulator of $\{u, w\}$ is approximately equal to the absolute value of the determinant of

$$R' = \left(\begin{array}{rrr} 4.60 & 2.12\\ 1.64 & -3.82\\ -6.24 & 1.68 \end{array}\right)$$

with any row deleted, namely ≈ 21 . This time, this is the same as the regulator of K, so $\{u, w\}$ is a system of fundamental units for K.

10. We notice that $\mathcal{L}(u) + \mathcal{L}(v) + 2\mathcal{L}(w) \approx 0$. Assuming that this is in fact an exact 0, this would mean that uvw^2 is trivial in $\mathbb{Z}_K^{\times}/W_K$. As $W_K = \{\pm 1\}$, this would mean that $v = \pm u^{-1}w^{-2}$.

Comparing $\sigma_k(v)$ with $\sigma_k(u^{-1}w^{-2}) = \sigma_k(u)^{-1}\sigma_k(w)^{-2}$ for k = 1, 2, 3, we guess that $v = +u^{-1}w^{-2}$.

This is consistent with question 7: the transition matrix between $\{u, w\}$ and $\{u, v\}$ would be $\begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix}$, whose determinant has absolute value 2.

Remark: In fact, we can of course check that we indeed have $v = u^{-1}w^{-2}$ by expressing everything as polynomials in α , but this is not in the spirit of this exercise.