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Exercise 5.1: Units in a real quadratic field
Let K = Q(

√
42), viewed as a subfield of R.

1. Find a fundamental unit ε in K such that ε > 1.

2. Prove that the equation x2 − 42y2 = −1 has no solutions in integers.

Hint: Write down generators for Z×
K. What are their norms?

We now wish to determine the class group Cl(K) of K.

3. First of all, prove that it is generated by the image of the prime p2 above 2, and
that this image has order at most 2 in Cl(K).

4. We want to prove that p2 is not principal. Suppose by contradiction that it
is, and let γ = x + y

√
42 be a generator. Explain why we may assume that

1√
ε
≤ γ ≤

√
ε, and deduce that |y| < 2.

5. Prove that Cl(K) ≃ Z/2Z.

Solution 5.1:
1. We have ZK = Z[

√
42]. The norm of the generic element x + y

√
42 ∈ ZK is

x2 − 42y2, so units in K correspond to the pairs of integers (x, y) such that
x2 − 42y2 = ±1, and we know that the pair with the smallest nonzero y corre-
sponds to a fundamental unit. For y = 1, we get x2 = 41 or 43, which has no
solution in integers. But for y = 2, we find that 132− 42 · 22 = 1, so we find the
fundamental unit ε = 13 + 2

√
42, which clearly satisfies ε > 1.

2. This amounts to proving that there is no element of norm −1 in ZK . Such an
element would be a unit, so let us take a look at Z×

K .

Since K is a subfield of R, WK is reduced to {±1}, so Z×
K is generated by the

root of unity −1 and by the fundamental unit ε.

We observe that NK
Q (−1) = (−1)2 = +1, and that NK

Q (ε) = 132 − 42 · 22 = +1
as well. Since these two units generate Z×

K , this means that every unit in K has
norm +1, so there are indeed no units of norm −1 in K.

3. The discriminant of K is 22 · 42 and its signature is (2, 0), so the Minkowski
bound is

MK =
2!

22

√
22 · 42 =

√
42 < 7,

which means that Cl(K) is generated by the primes above 2, 3, and 5.

1

https://www.maths.tcd.ie/~mascotn/teaching/2022/MAU34109/index.html


Now 2 and 3 both divide discK, so they ramify, say (2) = p22 and (3) = p23,
whereas 5 is inert in K since 2 is a nonzero nonsquare mod 5. So Cl(K) is
generated by [p2] and [p3], and we have the relations [p2]

2 = [p3]
2 = 1.

We now try to find a relation between [p2] and [p3]. For this, we need to find
an element of ZK of norm ±2 · 3, that is to say a pair of integers (x, y) such
that x2 − 42y2 = ±6. We spot the solution x = 6, y = 1, which tells us that
6 +

√
42 has norm −6, so that the ideal (6 +

√
42) factors as p2p3. This yields

the relation [p2][p3] = 1 in Cl(K), which shows that Cl(K) is generated by [p2]
alone. Besides, the relation [p2]

2 = 1 tells us that the order of [p2] is at most 2.

4. After replacing γ with ±εnγ for some n ∈ Z, which is legitimate as it is associate
to γ and therefore generates the same ideal, we may assume that γ > 0 (thanks
to the ±) and that 1√

ε
≤ γ ≤

√
ε (by adjusting n).

Write γ = x + y
√
42. Since γ generates p2, which has norm 2, γ must have

norm ±2, whence ±2 = (x+ y
√
42)(x− y

√
42). Thus

|2y
√
42| = |(x+ y

√
42)− (x− y

√
42)| =

∣∣∣∣γ ± 2

γ

∣∣∣∣ ≤ 3
√
ε,

so

|y| ≤ 3
√
ε

2
√
42

<
3
√
13 + 2 · 7
2
√
42

=
9

2
√
14

<
9

6
< 2.

5. Since γ ∈ ZK = Z[
√
42], y is an integer, so it must be 0 of ±1. However, the

equation x2−42y2 = ±2 has no integer solutions with such y, which contradicts
our assumption that p2 is principal. So [p2] ̸= 1, so [p2] has order exactly 2, and
therefore

Cl(K) = ⟨[p2]⟩ ≃ Z/2Z.

Exercise 5.2: Arbitrary unit groups
1. Prove that there is no number field K such that the unit group Z×

K is isomorphic
to Z/50Z× Z10.

2. Find a number field K such that ZK
∼= Z/4Z× Z.

Solution 5.2:
1. Let K be such a number field. Then K contains a primitive 50th root of

unity ζ50, so Q(ζ50) is a subfield of K isomorphic to the 50th cyclotomic field.
Therefore, the degree of K is a multiple of φ(50) = φ(2 · 52) = 20, say 20k
with k ∈ Z≥1. Moreover, K is totally complex since it contains non-trivial
roots of unity. So the signature of K is (0, 10k), and by Dirichlet’s theorem, the
rank of Z×

K is 10k − 1, which cannot equal 10.
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2. By the same analysis as above, such a number field must contain Q(ζ4) = Q(i)
and have degree 4 and signature (0, 2). Moreover, such a field satisfies the
required property, unless it has too many roots of unity. By listing the n ∈ N
such that ϕ(4n) = 4, we see that it is enough to find such a K that is not
isomorphic to Q(ζ8) nor Q(ζ12).

Let K = Q(i,
√
5) ⊂ C. Then the inclusions

Q ⊂ Q(
√
5) ⊂ K = Q(

√
5)(i)

and the fact that Q(
√
5) has not 4th root of unity since it admits real em-

beddings prove that K has degree 4. Besides, Q(
√
5) is ramified at 5, so

K itself is ramified at 5 and is therefore not isomorphic to Q(ζ8) or Q(ζ12).
So Z×

K
∼= Z/4Z× Z.
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Exercise 5.3: A lower bound on the regulator
Let K be a number field of degree 3 such that discK < 0.

1. Prove that the signature of K is (1, 1).

2. From now on, we let σ be the unique real embedding of K. Prove that there
exists ε ∈ K such that Z×

K = {±εn, n ∈ Z} and that σ(ε) > 1, and that such
an ε is unique.

3. Prove that ε is a primitive element for K, and deduce that the minimal polyno-
mial of ε factors over R as (x− σ(ε))(x− u−1eiθ)(x− u−1e−iθ) for some θ ∈ R,
where u =

√
σ(ε).

4. Using without proof the fact that(
u3 + u−3

2
− cos θ

)2

sin2 θ <
u6

4
+

3

2

for all θ ∈ R (you are NOT required to prove this), prove that

σ(ε) >
3

√
| discK|

4
− 6.

Hint: Prove that

discZ[ε] = −16

(
u3 + u−3

2
− cos θ

)2

sin2 θ.

5. As an application, we want to find a fundamental unit in K = Q(α) where α
is a root of f(x) = x3 + 4x + 2. We admit without proof that the only real
root of f(x) is approximately −0.473, and still denote by σ the corresponding
embedding of K into R.

(a) By taking a look at the decomposition of 2ZK , find a unit u ∈ Z×
K such

that σ(u) > 1.

(b) Prove that u is either a fundamental unit or the square of a fundamental
unit.

(c) By reducing u mod one of the primes above 3, prove that u is actually a
fundamental unit.

(d) What is the regulator of K?
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Solution 5.3:
1. Let (r1, r2) be the signature of K, so that r1 + 2r2 = 3. Since discK < 0 has

the same sign as (−1)r2 , we see that r2 is odd. This forces r1 = r2 = 1.

2. Since K has a real embedding, the group of roots of unity in K is WK = {±1}.
By Dirichlet’s theorem, the rank of the unit group is r1 + r2 − 1 = 1. Let ε be
a fundamental unit of Z×

K . Then we have

Z×
K = {±εn : n ∈ Z}.

The other fundamental units are the ±ε±1, and as σ(ε) ̸= ±1 as ε ̸= ±1, exactly
one of these has it image by σ in the interval (1,∞).

3. Since Z does not have any unit of infinite order, ε /∈ Q. So the field Q(ε) ⊂ K
is not Q, but its degree over Q divides that of K, which is 3. So [Q(ε) : Q] = 3
and Q(ε) = K, which means precisely that ε is a primitive element of K.

Let P be the minimal polynomial of ε over Q. Since ε is a primitive element
of K, the polynomial P has degree 3, is irreducible over Q, and has one real
root and two conjugate complex roots since the signature of K is (1, 1). The
real root is σ(ε), and let z, z̄ be the complex roots. Since ε is a unit, it has
norm ±1. This norm is also the product of the complex embeddings of ε, so

±1 = σ(ε)zz̄ = σ(ε)|z|2 > 0, so σ(ε)|z|2 = 1.

We get |z|2 = σ(ε)−1, so the polar decomposition of z is z = u−1eiθ with u =√
σ(ε) and θ ∈ R.

4. Since ε is a primitive element of K and is an algebraic integer, Z[ε] is an order
in K, so | discK| ≤ | discZ[ε]| = | discP |. We compute

discP =
[
(σ(ε)− u−1eiθ)(σ(ε)− u−1e−iθ)(u−1eiθ − u−1e−iθ)

]2
=

[
(σ(ε)2 − 2σ(ε)u−1 cos θ + u−2)u−12i sin θ

]2
= −16

(
u3 + u−3

2
− cos θ

)2

sin2 θ, since u2 = σ(ε).

Taking absolute values, we have

| discK| ≤ | discP |

< 16

(
u6

4
+

3

2

)
= 4(σ(ε)3 + 6).

Dividing by 4, subtracting 6 and taking cube roots, we obtain

σ(ε) >
3

√
| discK|

4
− 6.
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5. (a) First of all, f(x) is irreducible over Q since it is Eisenstein at p = 2, so K
is well-defined and has degree 3. Furthermore, since we are told that f(x)
has only one real root, the signature of K is (1, 1), so we can apply the
previous questions to K.

Next, we compute that disc f = −4 ·43−27 ·22 = −364 (which is negative,
confirming that signK = (1, 1)), which factors as −22 · 7 · 13. Since f(x)
is Eisenstein at p = 2, the ring of integers of K is thus ZK = Z[α].
Finally, since f(x) is Eisenstein at p = 2, 2 is totally ramified in K, and
more specifically (2) = p3 where p = (2, α) has norm 21. But NK

Q (α) = −2
from the constant coefficient of f(x), so actually p = (α).

It follows that (2) = (α)3 = (α3), so u1 = α3/2 = −2α + 1 is a unit.

We have σ(u1) = −2y − 1 ≈ −0.054, so u = −1/u1 is a unit with σ(u) =
−1/(−2y − 1) ≈ 18.5 > 1.

(b) Since Z×
K = {±εn, n ∈ Z} and σ(u) > 1, we must have u = +εn for some

integer n ⩾ 1. In particular, σ(u) = σ(ε)n. But the lower bound from

question 4. tells us that σ(ε) > 3

√
364
4

− 6 ≈ 4.4, whence n ⩽ 2 since

4.43 > 18.5.

(c) We find that x = −1 is a root of f(x) mod 3. As ZK = Z[α], we deduce
that q = (3, α + 1) is a prime ideal above p = 3 such that ZK/q ≃ Z/3Z,
the reduction being such that α ≡ −1 mod q.

In particular, u1 ≡ −2 × −1 − 1 = 1 mod q, so u = −1/u1 ≡ −1/1 =
−1 mod q. But −1 is not a square in ZK/q ≃ Z/3Z, so u is anot a square
mod q. Therefore u cannot be a square in ZK , so we cannot have n = 2 in
u = εn. As n ⩽ 2, this forces n = 1, so u = ε is a fundamental unit of K.

(d) Let τ, τ̄ be the other complex embeddings ofK. By definiton, the regulator
RK of K is the absolute value of the determinant of(

log |σ(ε)|
2 log |τ(ε)|

)
with any one row deleted. Therefore

RK =
∣∣ log |σ(ε)|∣∣ = ∣∣ log |1/(2y + 1)|

∣∣ = ∣∣ log |2y + 1|
∣∣ ≈ 2.9.
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Exercise 5.4: Units in a real cubic field
For this exercise, you will need a calculator so as to compute complex embeddings
explicitly. Do not worry about accuracy issues.

Let K = Q(α), where α is a root of f(x) = x3 − 12x+ 6. You will need to know
the following:

• The roots of f are approximately −3.69, 0.511, and 3.18.

• f Assumes the following values:

x −5 −4 −3 −2 −1 0 1 2 3 4 5
f(x) −59 −10 15 22 17 6 −5 −10 −3 22 71

• The regulator of K is1 approximately 21.

1. Prove that f is irreducible over Q, and that ZK = Z[α].

2. Determine WK and the rank of Z×
K .

3. Determine explicitly the decomposition of 2, 3, and 5 in K.

4. Use the formula NK
Q (α+n) = −f(−n) to prove that α− 3 generates the prime

above 3. Explain how to use this to discover that u = (α− 3)3/3 is a unit in K.

5. Factor the ideals (α − 1) and (α + 4) into primes. Use this to find a generator
γ for the prime above 2, and deduce that v = γ3/2 is also a unit in K.

I recommend you NOT to try to express γ and v as polynomials in α.

6. Compute approximately the regulator of {u, v}.

7. Let U be the subgroup of Z×
K generated by WK , u, and v. Is U equal to Z×

K?
What is the (possibly infinite) index of U in Z×

K?

8. Compute the factorisation of the ideal (α) into primes, and use it to find a third
unit w ∈ Z×

K .

9. Prove that {u,w} is a system of fundamental units for K.

10. Use the logarithmic embedding to conjecture a simple expression for v in terms
of u and w (you do not have to prove that your conjecture is correct). Is your
guess compatible with question 7?

1I determined this using a computer and methods beyond the scope of this class.
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Solution 5.4:
1. f is Eisenstein at 2 (and also at 3), so it is irreducible over Q and K is well-

defined up to isomorphism. Besides, f is monic and in Z[x], so α ∈ ZK and
therefore Z[α] is an order of discriminant

disc f = −4 ·(−12)3−27 ·(−6)2 = 28 ·33−22 ·35 = 22 ·33 ·(26−32) = 22 ·33 ·5 ·11.
We see from this factorisation that the index of Z[α] in ZK must divide 6.
However, it is also coprime with 2 and 3 since f is Eisenstein at these primes,
so this index is 1 and ZK = Z[α].

2. Since f(x) has three real roots, K has signature (3, 0) (one could also see this
from the fact that discK > 0). In particular, K is embeddable into R (in
three different ways), so WK is reduced to {±1}. As for the rank of Z×

K , it is
3 + 0− 1 = 2 by Dirichlet’s theorem.

3. As ZK = Z[α], we can determine the decomposition of any prime p ∈ N by
factoring f mod p. Now f is Eisenstein at 2, so 2 is totally ramified in K,
namely (2) = p32 where p2 = (2, α) has norm 2. For the same reason, (3) = p33,
where p3 = (3, α)3 has norm 3. Finally, we know that 5 ramifies in K since it
divides discK = discZ[α]. From the table of values of f , we spot that 1 and
2 are the only roots of f mod 5, so f ≡ (x − 1)2(x − 2) or (x − 1)(x − 2)2

mod 5. Since f ′ = 3(x2 − 4) vanishes mod 5 at 2 but not at 1, we have in
fact f ≡ (x− 1)(x− 2)2 mod 5, whence (5) = p5q

2
5, where p5 = (5, α− 1) and

q5 = (5, α− 2) both have norm 5.

4. We get from the table that NK
Q (α − 3) = −f(3) = 3, so (α − 3) is an ideal of

norm 3, which can only be p3 given the decomposition of 3 in K. Therefore
(3) = p33 = (α− 3)3 =

(
(α− 3)3

)
, so 3 and (α− 3)3 are associate in ZK .

5. From the table, NK
Q (α− 1) = −f(1) = −5, so (α+1) is an ideal of norm 5 and

is thus either p5 or q5. But α − 1 ∈ p5, so p5 | (α − 1) and so (α − 1) = p5.
Similarly, NK

Q (α + 4) = −f(−4) = 10, so (α + 4) has norm 10 and must thus
factor either as p2p5 or as p2q5, but α + 4 = α − 1 + 5 ∈ p5 so p5 | (α + 4) so
actually (α + 4) = p2p5.

We deduce that γ = α+4
α−1

satisfies (γ) = p2 (as fractional ideals, so also as
integral ideals; in particular γ ∈ ZK).

Then as in the previous question we get (2) = p32 = (γ)3 = (γ3), so 2 and γ3 are
associate in ZK .

6. The regulator of {u, v} is well-defined since we have seen that Z×
K has rank 2.

In order to evaluate it, we need to approximate L(u) and L(v), where L is the
logarithmic embedding. Let α1 ≈ −3.69, α2 ≈ 0.511, and α3 ≈ 3.28 be the
roots of f , and let σ1, σ2, σ3 be the corresponding embeddings of K into R; then
L(ε) =

(
log |σk(ε)|

)
k=1,2,3

for all ε ∈ Z×
K . Therefore

L(u) =
(
log

∣∣∣∣σk

(
(α− 3)3

3

)∣∣∣∣)
k=1,2,3

=

(
log

∣∣∣∣(αk − 3)3

3

∣∣∣∣)
k=1,2,3

≈ (4.60, 1.64,−6.24)
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and

L(v) =
(
log

∣∣∣∣σk

(
γ3

2

)∣∣∣∣)
k=1,2,3

=

log

∣∣∣∣∣∣∣
(

αk+4
αk−1

)3

2

∣∣∣∣∣∣∣


k=1,2,3

≈ (−8.84, 5.97, 2.88).

Deleting any row from

R =

 4.60 −8.84
1.64 5.97
−6.24 2.88


and taking the absolute value of the determinant of the resulting matrix yields
Reg({u, v}) ≈ 42.

7. The regulator of {u, v} is approximately twice that of K, so U is a strict sub-
group of Z×

K of index 2.

8. NK
Q (α) = −f(0) = −6, so (α) has norm 6 = 2 · 3. Therefore (α) = p2p3.

Hence (6) = (2)(3) = p32p
3
3 = (α)3 = (α3), so 6 and α3 are associate in ZK and

we may take w = α3/6 = 2α− 1.

Alternatively, we can say that (α) = p2p3 = (γ)(α− 3) and take w′ = α
γ(α−3)

=
α(α−1)

(α−3)(α+4)
; this does not matter since it turns out that w′ = w.

9. We evaluate

L(w) = (log |σk (2α− 1)|)k=1,2,3 = (log |2αk − 1|)k=1,2,3 ≈ (2.12,−3.82, 1.68).

Thus the regulator of {u,w} is approximately equal to the absolute value of the
determinant of

R′ =

 4.60 2.12
1.64 −3.82
−6.24 1.68


with any row deleted, namely ≈ 21. This time, this is the same as the regulator
of K, so {u,w} is a system of fundamental units for K.

10. We notice that L(u) + L(v) + 2L(w) ≈ 0. Assuming that this is in fact an
exact 0, this would mean that uvw2 is trivial in Z×

K/WK . As WK = {±1}, this
would mean that v = ±u−1w−2.

Comparing σk(v) with σk(u
−1w−2) = σk(u)

−1σk(w)
−2 for k = 1, 2, 3, we guess

that v = +u−1w−2.

This is consistent with question 7: the transition matrix between {u,w} and

{u, v} would be

(
1 −1
0 −2

)
, whose determinant has absolute value 2.

Remark: In fact, we can of course check that we indeed have v = u−1w−2 by
expressing everything as polynomials in α, but this is not in the spirit of this
exercise.
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