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Email your answers to mascotn@tcd.ie by Wednesday November 23 noon.

Exercise 4.1: A Mordell-Weil equation (100 pts)
The goal of this exercise is to solve the Diophantine equation

y2 = x3 − 148 (x, y ∈ Z) (1)

We let K = Q(α) where α =
√
−37, and note that (1) can be rewritten as

(y + 2α)(y − 2α) = x3.

You may use without proof the following facts:

• 148 = 4 · 37, and 37 is prime,

• Z×
K = {±1}.

1. (5 pts) Prove that the equation has no solution such that 37 | y.

2. (30 pts) Determine ZK and Cl(K), as well as the decomposition of 37 in K.

3. (15 pts) Let (x, y) be a hypothetical solution of (1). Prove that there is at most
one prime p of K that divides both (y+2α) and (y−2α). Which prime is that?

4. (35 pts) Deduce that at least one of y + 2α or y − 2α is a cube or twice a cube
in ZK .

Hint: Prove that (y+2α) = b3pr and (y−2α) = b′3pr
′
for some ideals b, b′ ◁ZK

and integers r, r′ ⩾ 0. How small can you make r and r′?

5. (15 pts) Find all the solutions of (1).

Solution 4.1:
1. If 37 | y, then 37 | x3 so 37 | x. But then 372 | 37, absurd.

2. As −37 ≡ 3 mod 4, we have ZK = Z[α] and

MK =
2!

22
4

π

√
4 · 37 = 7.74 · · · < 11.

This is large, but fortunately 3, 5 and 7 are inert! So Cl(K) is generated by
[p2] where p2 = (2, α + 1) is such that (2) = p22, and is thus either trivial or

1

https://www.maths.tcd.ie/~mascotn/teaching/2022/MAU34109/index.html
mailto:mascotn@tcd.ie


isomorphic to Z/2Z. Since x2 + 37y2 = ±2 has no solution in integers, we
actually have

Cl(K) = ⟨[p2]⟩ ≃ Z/2Z.

Finally, we have (37) = p237 with p37 = (37, α) (= (α) since α has norm 37, but
here this is irrelevant).

3. Let p be a prime dividing (y+2α, y− 2α). Then 4α = (y+2α)− (y− 2α) ∈ p,
so p | (4α) = 4(α) = p42p37. However, we also have 2y = (y+2α)+(y−2α) ∈ p,
so if p = p37 then y ∈ p37 ∩ Z = 37Z, and the first question tells us that this is
not possible. So the only possibility is p = p2.

4. Let us factor (y+2α) = apm2 , (y− 2α) = a′pm
′

2 , where a and a′ are prime to p2.
By the previous question, a and a′ are coprime, so since

aa′pm+m′

2 = (y + 2α)(y − 2α) = (x3) = (x)3

is the cube of an ideal, we must have a = b3, a′ = b′3 for some ideals b and b′,
and 3 | m +m′. Write m = 3q + r and m′ = 3q′ + r′ with 0 ⩽ r, r′ < 3. Then

we get (y + 2α) = c3pr2, (y − 2α) = c′3pr
′

2 with c = bpq2 and c′ = b′pq
′

2 .

If r = 0, then (y + 2α) = c3, and since 3 is coprime to hK = 2, this means
that c is principal, say c = (γ), γ ∈ ZK . Then (y + 2α) = c3 = (γ3), so there
exists a unit u ∈ Z×

K such that y + 2α = uγ3. Since u = ±1, we deduce that
(y + 2α) = (uγ)3 is a cube in ZK . Similarly, if r′ = 0 we see that y − 2α is a
cube in ZK .

Suppose now that r and r′ are both nonzero. Since 3 | m +m′, we must have
r = 1, r′ = 2, or vice versa. Suppose for instance that r = 2. Then we have
(y + 2α) = c3p22 = 2c3, so by the same logic as above c = (γ) is principal and
therefore y + 2α = 2uγ3 = 2(uγ)3 is twice a cube. Similarly, if r′ = 2, then
y − 2α is twice a cube.

5. Suppose first that one of y± 2α is a cube in ZK . Then there exist u, v ∈ Z such
that

y ± 2α = (u+ vα)3 = (u2 − 3 · 37v2)u+ (3u2 − 37v2)vα.

Comparing the coefficients of α, we get that (3u2−37v2)v = ±2, whence v = ±1
or ±2. For v = ±1 we get 3u2 = ±2 + 37 which is absurd, whereas for v = ±2
we get 3u2 = ±1 + 37 · 4 which admits the solution u = ±7. This gives
y = (u2 − 3 · 37v2)u = ±2765, and indeed x = 197, y = ±2765 is a solution of
(1).

If now one of y ± 2α is a cube in ZK , then we get

y ± 2α = 2(u+ vα)3 = 2(u2 − 3 · 37v2)u+ 2(3u2 − 37v2)vα

whence v = ±1 and 3u2 = ±1+37, which is absurd, so we get no solutions this
way.

Conclusion: the only solutions of (1) are x = 197, y = ±2765.
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This was the only mandatory exercise, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I highly
recommend that you try to solve them for practice (they may even give
you inspiration to help you solve Exercise 1), and you are welcome to email
me if you have questions about them. The solutions will be made available
with the solution to the mandatory exercise.

Exercise 4.2: Class group computations
Determine the class group of the following number fields:

1. Q(
√
−29),

2. Q(
√
−33).

Solution 4.2:
1. Let K = Q(α), where α =

√
−29. As −29 ≡ 3 mod 4, we have ZK = Z[α] and

discK = −4 · 29. Besides, signK = (0, 1), so the Minkowski bound is

MK =
2!

22
4

π

√
4 · 29 = 6.85 · · · < 7

so Cl(K) is generated by the primes above 2, 3, and 5.

As ZK = Z[α], we compute by factoring x2 + 29 mod these primes that

(2) = p22, p2 = (2, α+ 1),

(3) = p3q3, p3 = (3, α+ 1), q3 = (3, α− 1),

(5) = p5q5, p5 = (5, α+ 1), q5 = (5, α− 1).

Thus in Cl(K) we have [p2]
2 = 1, [q3] = [p3]

−1, and [q5] = [p5]
−1, so Cl(K) is

generated by [p2], [p3] and [p5].

The norm of the generic element x + yα of ZK is x2 + 29y2. We spot that
1 + α has norm 30, whence the factorization (1 + α) = p2p3p5 and the relation
[p2][p3][p5] = 1 in Cl(K), which is thus generated by [p2] and [p3] alone.

We next spot that 29 + 42 = 45 = 32 · 5, whence (4 + α) = p23q5 and therefore
[p5] = [p3]

2, which yields [p2] = [p3]
−4. Thus Cl(K) is cyclic and generated by

[p3].

To conclude, we must determine the order of [p3]. Suppose that pm3 = (β) is
principal for some m ∈ N; then β ∈ ZK must be of norm ±3m, so we have
a solution to x2 + 29y2 = ±3m. Since β cannot be divisible by 3 in ZK (lest
(3) = p3q3 divide pm3 ), we then have 3 ∤ x or 3 ∤ y. Conversely, given x and y
not both divisible by 3 and satisfying x2 +29y2 = 3m, we have that β = x+ yα
generates an ideal of norm 3m, that factors either as pm3 or qm3 since β is not
divisible by 3 in ZK . Since [p3] and [q3] are inverses of each other, they have the
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same order, and so this common order is the smallest m ∈ N such that x2+29y2

has a solution with x and y not both divisible by 3.

For m ⩽ 3, we necessarily have y = 0, which is excluded since its forces x to
be a power of 3. For m = 4, we want x2 = 81− 29y2, which forces y = ±1 and
leads to a contradiction. Similarly for m = 5, we must have |y| ⩽ 2, and hence
no solution. But for m = 6, we find 22 + 29× 52 = 36. In conclusion,

Cl(K) = ⟨[p3]⟩ ≃ Z/6Z.

2. Let K = Q(α), where α =
√
−33. This time ZK = Z[α], discK = −4 · 33,

signK = (0, 1), and

MK =
2!

22
4

π

√
4 · 33 = 7.31 · · · < 11

so Cl(K) is generated by the primes above 2, 3, 5, and 7.

We compute as previously

(2) = p22, p2 = (2, α+ 1),

(3) = p23, p3 = (3, α),

5 is inert,

(7) = p7q7, p7 = (7, α+ 3), q7 = (7, α− 3),

so Cl(K) is generated by [p2], [p3] and [p7], and we already have the relations
[p2]

2 = [p3]
2 = 1.

The norm of x+yα ∈ ZK is x2+33y2. We spot that 3+α has norm 42 = 2×3×7,
so (3 + α) = p2p3p7 and Cl(K) is generated by [p2] and [p3]. Since these are of
order at most 2, Cl(K) is a quotient of Z/2Z× Z/2Z.
If this quotient were strict, at least one of p2, p3, or p2p3 would be principal.
But x2 + 33y2 is clearly never 2 nor 3 nor 6, so in conclusion

Cl(K) = ⟨[p2], [p3]⟩ ≃ Z/2Z× Z/2Z.

Exercise 4.3: A norm equation
Let n ⩾ 0 be an integer. The goal of this exercise is to determine the number of
solutions to the Diophantine equation

x2 + 10y2 = 7n (x, y ∈ Z) (2)

in terms of n.
We let K = Q(α) where α =

√
−10, and note that (2) can be rewritten as

NK
Q (x+ αy) = 7n.

You may freely use the fact that Z×
K = {±1}.
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1. Determine ZK and Cl(K).

2. Determine the decomposition of 7 in ZK , and the image in Cl(K) of the primes
appearing in this factorisation.

3. Let a be an of ZK of norm 7n. What does the factorisation into primes of a
look like? What does this tell you about the image of a in Cl(K)?

4. Express the number of solutions to (2) in terms of n.

Solution 4.3:
1. Since −10 ̸≡ 1 (mod 4), we have ZK = Z[α] = {x+yα, x, y ∈ Z} and discK =

−40, so MK = 2!
22

4
π

√
40 ≈ 4.03 and Cl(K) is generated by the primes above

2 and 3. As 2 | 40, 2 ramifies in K, say 2 = p22 (where p2 = (2, α) since
x2 + 10 ≡ x2 mod 2, but we will not use this), whereas 3 is inert as x2 + 10
remains irreducible mod 3, so Cl(K) is generated by [p2] (and is thus cyclic).
The norm of the generic element x+ yα of ZK is x2 + 10y2, and this is clearly
never ±2, so p2 is not principal; so the relation (2) = p22 implies that [p2] has
order exactly 2. Thus Cl(K) ≃ Z/2Z.

2. The polynomial x2 + 10 has two distinct roots mod 7, namely 2 and −2 = 5.
Therefore 7 splits in K, say (7) = p7q7 (and we can take p7 = (7, α − 2),
q7 = (7, α+2), but again we will not use this). Since the equation x2+10y2 = ±7
has clearly no solution in integers, neither p7 nor q7 can be principal. But hK

is only 2, so necessarily [p7] = [q7] is the non-trivial element of Cl(K), which is
also [p2].

3. Since N(a) = 7n, so only p7 and q7 can appear in the factorisation of a. More
precisely, since N(p7) = N(q7) = 7, we must have a = pm7 q

n−m
7 for some 0 ⩽

m ⩽ n. This implies that

[a] = [p7]
m[q7]

n−m = [p2]
m[p2]

n−m = [p2]
n.

Since [p2] has order exactly 2, this means that a is principal if n is even, and
non-principal is n is odd. However a = (x+ yα) is principal by construction, so
if n is odd this contradiction shows that (2) has no solution.

4. Let (x, y) ∈ Z2, and let a = (x+ yα). Then a is principal by construction, and
N(a) = |NK

Q (x + yα)| = x2 + 10y2, so that we get a map between solutions of
(2) and principal ideals of ZK of norm 7n. This map is 2-to-1, since a principal
ideal has exactly #Z×

K = 2 generators (since any two generators are associate,
and conversely).

By the previous question, there are n+1 ideals of norm 7n, namely the pm7 q
n−m
7

for 0 ⩽ m ⩽ n, and if n is even they are all principal, whereas none of them is
principal if n is odd. Conclusion: the number of solutions to (2) is 0 if n is odd,
and 2(n+ 1) if n is even.
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Exercise 4.4: Arbitrarily large class numbers
Let d > 0 be a squarefree integer, and let K = Q(

√
−d). Suppose that p ∈ N is a

prime which splits in K, and let p be a prime ideal above p.

1. Prove that for all integers i ≥ 1 such that pi < | discK|/4, the ideal pi is not
principal.

Hint: consider the cases d ̸≡ 1 (mod 4) and d ≡ 1 (mod 4) separately.

2. What does this tell you about the class number of K?

3. Using without proof the fact that there exists infinitely many squarefree positive
numbers of the form 8k + 7 for k ∈ N, prove that for every X > 0 there exists
a number field K such that hK > X.

Solution 4.4:
1. Let i be as above. Since p is split, N(p) = p, and by uniqueness of factorisation

the ideal pi is not divisible by (p).

• If discK = −4d, then ZK = Z[
√
−d]. The norm of a generic element z =

x+ y
√
−d ∈ ZK is

x2 + dy2.

If pi is principal, let γ be a generator. Then the norm of γ is pi, giving x2+
dy2 = pi, so y2 ≤ pi/d < 1, so y = 0. But then γ ∈ Z has normγ2 = pi,
so γ is divisible by p, and this is impossible since pi is not divisible by (p).

• If discK = −d, then ZK = Z[α] with α = 1+
√
−d

2
. The norm of a generic

element z = x+ yα is (
x+

y

2

)2

+ d
(y
2

)2

.

If pi is principal, let γ be a generator. Then the norm of γ is pi, so y2 ≤
4pi/d < 1, so y = 0 and as before γ is divisible by p, which is impossible.

2. The number of i as in the previous question is⌊
log(| discK|/4)

log p

⌋
,

and by the previous question the order of [p] in Cl(K) is larger than this. So,
accounting for the trivial class, we have

hK ≥ 1 +

⌊
log(| discK|/4)

log p

⌋
.

3. Let d be squarefree of the form 8k + 7. Then −d < 0 is squarefree and −d ≡
1 mod 8. Let K = Q(

√
−d). Then discK = −d and 2 is split in K. By the

previous part we have hK ≥ 1 +
⌊
log(d/4)
log 2

⌋
, which tends to ∞ as d → ∞. Using

an infinite sequence of such d we obtain hK → ∞.
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Exercise 4.5: A non-Euclidean PID
Recall that a domain R is Euclidean if there exists a size function s : R \ {0} −→ N
such that for all a, b ∈ R with b ̸= 0, there exist q, r ∈ R such that a = bq + r and
either r = 0 or s(r) < s(b) (example: R = K[x] where K is a field, s = deg).

One proves in commutative algebra that every Euclidean domain is automatically a
PID, and one usually mentions that the converse does not hold, but counter-examples
are not easy to exhibit.

The purpose of this exercise is to provide an example of a PID which is not Eu-
clidean. As such, unlike other exercises, this exercise is more about commutative
algebra than algebraic number theory, and will therefore not really help you to prepare
for the exam; but I thought some of you might like to see this example since it is a
nice application of algebraic number theory.

Let K = Q(
√
−19).

1. Determine ZK .

2. Prove that ZK is a PID.

3. Prove that Z×
K = {±1}.

4. Prove that ZK has no ideal of norm 2 nor 3.

5. Let R be a Euclidean domain with size function s which is not a field, let R×

be the group of units of R, and let U = R× ∪ {0}. Prove that there exists
an m ∈ R \ U such that every element of the quotient ring R/(m) can be
represented by an element of U (in other words, such that the restriction to U
of the projection morphism R −→ R/(m) remains surjective).

Hint: Consider an element of R \ U of minimal size.

6. Prove that the does not exist any size function for which ZK is Euclidean.

Solution 4.5:
1. Since −19 ≡ 1 mod 4, ZK = Z[α] = {x+ yα | x, y ∈

Z} where α = 1+
√
−19
2

.

We note for future reference that NK
Q (x+yα) = (x+1/2)2+ 19

4
y2 = x2+xy+5y2.

2. We have sign(K) = (0, 10 and discK = −19, so MK = 2!
22

4
π

√
19 = 2.77 · · · , so

we only need to check the primes above 2. However −19 ≡ 5 mod 8, so 2 is
inert, so the only prime above 2 is (2), which is obviously principal.

3. Solving (x + 1/2)2 + 19
4
y2 = ±1 for x, y ∈ Z, we immediately see that y = 0

since 19/4 > 1.
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4. An ideal of norm 2 would be a prime above 2, and we have already seen that no
such prime exists. For 3, we could conclude in a similar way b observing that
3 is also inert in K since −19 ≡ −1 is not a square mod 3; alternatively, since
we know that ZK is principal, it is enough to show that (x+1/2)2 + 19

4
y2 = ±3

has no solutions in integers, which is clear since 19/4 > 3 (so y = 0) and 3 is
not a square.

5. Since R is not a field, R \U is not empty, so s(R \U) is a non-empty subset of
N. It therefore admits a smallest element, so there exists m ∈ R \ U such that
s(x) ⩾ s(m) for all x ∈ R \ U .

Let now x ∈ R. Since m ̸∈ U , m ̸= 0, so we can perform a Euclidean division
of x by m, and get q, r ∈ R such that x = mq + r with r = 0 or s(r) < s(m).
If s(r) < s(m), then r ∈ U by construction of m; and if r = 0, then r ∈ U as
well. But x and r represent the same class in the quotient ring R/(m).

6. By contradiction, if R = ZK were Euclidean for any size function, the previous
question would grant us with an m ∈ ZK \U such that every element of ZK/(m)
can be represented by an element of U . But U = Z×

K ∪ {0} = {1,−1, 0} has
only three elements, so R/(m) would have cardinal at most 3. On the other
hand, R/(m) cannot have cardinal 1 since m ̸∈ U is not a unit, so R/(m) would
have cardinal 2 or 3. But this would mean that (m) is an ideal of norm 2 or 3,
which contradicts question 4.
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