

Faculty of Science, Technology, Engineering and Mathematics School of Mathematics

JS/SS Maths/TP/TJH

Semester 1, 2022

MAU34109 Algebraic number theory

Not today Not here Not right now

Dr. Nicolas Mascot

Instructions to candidates:

This is NOT a real exam! These exercises are just here to help you prepare for the real exam. The use of non-programmable calculators is therefore allowed, the lecturer does not care.

You may not start this examination until you are instructed to do so by the Invigilator.

Question 1 Quadratic fields with little ramification

- 1. Let $p \in \mathbb{N}$ be an odd prime. Find all quadratic number fields (real and imaginary) which are ramified at p and only at p.
- 2. Same question for p = 2.

Question 2 Your turn to mark!

Find all that is wrong in the following paragraph:

Let K be an imaginary quadratic field. By Dirichlet's theorem, the rank of \mathbb{Z}_K^{\times} is zero, so the only units in K are ± 1 . But let us consider a prime $p \in \mathbb{N}$ which ramifies in K, say $p\mathbb{Z}_K = \mathfrak{p}^2$. Write $\mathfrak{p} = (\gamma)$; then we have $(p) = \mathfrak{p}^2 = (\gamma)^2 = (\gamma^2)$, so we get that $u = \gamma^2/p$ is a unit in K, which contradicts Dirichlet's theorem.

Question 3 A quartic field and some big numbers

Let $f(x) = x^4 + 3x^3 - 18x^2 - 24x + 129$, which is an irreducible polynomial over \mathbb{Q} (why?), and let $K = \mathbb{Q}(\alpha)$, where α is a root of f(x).

- 1. If I told you that disc f = 930,069, why would not that be very useful to you? What information can you get from that nonetheless?
- I now tell you that the roots of f are approximately -4.1 ± 0.1i and 2.6 ± 1.0i. What is the signature of K? Can you compute the trace of α from these approximate values? Why is the result obvious?
- 3. If I now tell you that disc f factors as $3^3 \cdot 7^2 \cdot 19 \cdot 37$, what can you say about the ring of integers of K and the primes that ramify in K?
- 4. In principle (don't actually do it), how could you test whether $\beta = \frac{\alpha^3 2\alpha^2 \alpha + 2}{7}$ is an algebraic integer?

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2022

- 5. If I now tell you that the characteristic polynomial of β is $\chi(\beta) = x^4 + 28x^3 + 207x^2 + 154x + 247$, whose discriminant is disc $\chi(\beta) = 25,364,993,616$, which conclusions can you draw from that?
- 6. Given that disc $\chi(\beta)$ factors as $2^4 \cdot 3^3 \cdot 17^4 \cdot 19 \cdot 37$, what is the index of the order $\mathbb{Z}[\beta]$? What consequence does this have on the expression of a \mathbb{Z} -basis of \mathbb{Z}_K in terms of β ?
- 7. Let $\gamma = \frac{\beta^2 3\beta 3}{34}$, and let $\delta = \frac{\beta^3 12\beta 9}{34}$, whose respective characteristic polynomials are $\chi(\gamma) = x^4 13x^3 + 42x^2 + 8x + 1$ and $\chi(\delta) = x^4 + 139x^3 + 5163x^2 + 973$. Prove that $\{1, \beta, \gamma, \delta\}$ is a \mathbb{Z} -basis of \mathbb{Z}_K .
- 8. Compute explicitly the decomposition of 2, 3, and 7 in K.
- 9. Determine the rank of \mathbb{Z}_K^{\times} , and bound the size of W_K .
- 10. Find a non-trivial (that is to say $u \neq \pm 1$) unit u in K.
- 11. How can you test whether $u \in W_K$?

Question 4 A cubic field

Let $f(x) = x^3 - 4x^2 + 2x - 2$, which is an irreducible polynomial over \mathbb{Q} (why?), and let $K = \mathbb{Q}(\alpha)$, where α is a root of f.

- 1. Given that disc f = -300, what can you say about the ring of integers of K and the primes that ramify in K? What if, on the top of that, you notice that $f(x + 3) = x^3 + 5x^2 + 5x 5$?
- 2. Prove that \mathbb{Z}_K is a PID.
- 3. Find a generator for each of the primes above 2, 3 and 5.
- 4. Use the results of the previous question to discover that $u=2\alpha^2-\alpha+1$ is a unit.
- 5. We use the unique embedding of K into \mathbb{R} to view K as a subfield of \mathbb{R} from now on. Prove that there exists a unit $\varepsilon \in \mathbb{Z}_K^{\times}$ such that $\mathbb{Z}_K^{\times} = \{\pm \varepsilon^n, n \in \mathbb{Z}\}$ and $\varepsilon > 1$.

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2022

6. By the technique of exercise 3 from exercise sheet number 5, it can be proved that $\varepsilon \ge 4.1$. Given that $u \approx 23.3$, prove that u is a fundamental unit. What is the regulator of K?

Hint : Reduce u modulo the primes above 3 to prove that u is not a square in \mathbb{Z}_K .

Question 5 An indefinite quadratic form

In this exercise, we let $K = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{195}$. The following facts may be useful:

- 195 factors as $3 \cdot 5 \cdot 13$,
- The squares mod the first few primes are as follows:

p	Squares mod p
2	0,1
3	0, 1
5	0, 1, 4
7	0, 1, 2, 4
11	0, 1, 3, 4, 5, 9
13	0, 1, 3, 4, 9, 10, 12
17	0, 1, 2, 4, 8, 9, 13, 15, 16.

- 1. What are the ring of integers and the discriminant of K?
- 2. Find explicit generators for the unit group \mathbb{Z}_K^{\times} of K.
- 3. Compute the decomposition of the primes $p \leq 13$ in K.
- 4. Factor the ideals $\alpha \mathbb{Z}_K$ and $(15 + \alpha) \mathbb{Z}_K$ into prime ideals.
- 5. Prove that \mathbb{Z}_K has no element of norm N for any $N \in \{\pm 2, \pm 3, \pm 5\}$.

Hint: View K as a subfield of \mathbb{R} , and multiply an hypothetical such element by a unit so as to make it neither too small nor too big.

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2022

- 6. Deduce that $\operatorname{Cl}(K)$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 7. For each of the following values of m, determine the number of ideals of norm m and whether the equation $x^2 195y^2 = m$ has solutions with $x, y \in \mathbb{Z}$, and if it does, say how many solutions it has, and give an explicit such solution:
 - (a) $m = 7^{34109}$,
 - (b) m = 10,
 - (c) m = 195,
 - (d) $m = 2 \cdot 3 \cdot 199961$, noting that $N_{\mathbb{Q}}^{K}(1000 + \alpha) = 5 \cdot 199961$ where 199961 is prime.

Hint: Think in terms of principal ideals.

Question 6 Another cubic field

Let $P(x) = x^3 + 6x + 6 \in \mathbb{Z}[x]$, and let $K = \mathbb{Q}(\alpha)$, where α is a root of P(x). You may find the following table useful:

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
P(n)	-149	-82	-39	-14	-1	6	13	26	51	94	161

- 1. Compute $[K : \mathbb{Q}]$, \mathbb{Z}_K , and disc K.
- 2. Prove that Cl(K) is generated by $[p_2]$, where p_2 is the prime of K above 2.
- 3. Find a non-trivial unit u in K, and prove that it generates the group $\mathbb{Z}_{K}^{\times}/\mathbb{Z}_{K}^{\times 3}$ of units modulo cubes of units.

Hint: Reduce u modulo a prime of K to prove that it is not a cube.

- 4. Prove that if \mathfrak{p}_2 were principal, there would exist a unit v such that 2v is a cube in K.
- 5. Determine Cl(K).

END

Page 5 of 5

(c) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2022