MAU34104 Group representations 2 - The module point of view

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: January 27, 2023

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Modules over a ring

Modules

Definition (Module, morphism of modules)

Let R be a ring. An R-module is a set M with two laws

such that (M, +) is an Abelian group, and that for all $\lambda, \mu \in R$ and $m, n \in M$, we have

$$\lambda(\mu m) = (\lambda \mu)m, \qquad 1m = m, \\ (\lambda + \mu)m = (\lambda m) + (\mu m), \qquad \lambda(m + n) = (\lambda m) + (\lambda n).$$

A morphism $f : M \longrightarrow N$ between *R*-modules is an <u>*R*-linear</u> map, meaning

$$f(m + m') = f(m) + f(m')$$
 and $f(\lambda m) = \lambda f(m)$

for all $m, m' \in M$ and $\lambda \in R$.

Modules: examples

Example

If R is actually a field, then R-module = R-vector space, and module morphism = linear transformation.

Example

Let *R* be a ring, and let $n \in \mathbb{N}$. Then

$$R^n = \{(x_1, \cdots, x_n) \mid x_i \in R\}$$

is an *R*-module.

Example

For $R = \mathbb{Z}$, \mathbb{Z} -module = Abelian group:

$$ng = \underbrace{g + \cdots + g}_{(n \in \mathbb{Z}, g \in G)}$$

n times

and module morphism = group morphism.

Let *R* be a ring. Given two *R*-modules M, N, we denote the set of morphisms from *M* to *N* by $\text{Hom}_R(M, N)$. It is actually an Abelian group for pointwise addition.

In the case M = N, we write $\operatorname{End}_R(M) = \operatorname{Hom}_R(M, M)$. It is actually a <u>ring</u>, where multiplication is given by composition.

Example

If R is actually a field, and if M is an R-vector space of dimension n, then $\operatorname{End}_R(M) \simeq \mathcal{M}_n(R)$.

Definition (Submodule)

Let M be an R-module. A <u>submodule</u> of M is a subset of M which is nonempty and closed under + and under multiplication by R.

Example

Let M = R, viewed as an *R*-module. Then the submodules of *M* are the <u>ideals</u> of *R*.

Proposition

Let $f : M \longrightarrow N$ be a morphism of modules. Then Ker f is a submodule of M, and Im f is a submodule of N.

Definition (Direct sum)

Let *M* be an *R*-module, and $(M_i)_{i \in I}$ a collection of submodules of *M*. We say that $M = \bigoplus_{i \in I} M_i$ if every element $m \in M$ can be expressed as $m = \sum_{i \in I}^{\text{finite}} m_i$ with $m_i \in M_i$ in a <u>unique</u> way.

Example

$$R[x] = \bigoplus_{n \in \mathbb{Z}_{\geq 0}} Rx^n.$$

Remark

In the case of 2 submodules, $M = M_1 \oplus M_2$ iff. every $m \in M$ is of the form $m = m_1 + m_2$, $m_1 \in M_1$, $m_2 \in M_2$, and if $M_1 \cap M_2 = \{0\}$. Indeed, if $m = m_1 + m_2 = m'_1 + m'_2$, then $m'_1 - m_1 = m_2 - m'_2 \in M_1 \cap M_2$.

Representations as modules

The group ring

Let K be a field, and X be a set. Recall that

$$\mathcal{K}[X] = \left\{ \sum_{x \in X}^{\text{finite}} \lambda_x e_x \mid \lambda_x \in \mathcal{K} \right\} = \bigoplus_{x \in X} \mathcal{K} e_x$$

is the K-vector space with basis $\{e_x\}_{x \in X}$ indexed by X.

If X = G is actually a group, then K[G] is actually a ring by the rule $e_g e_h = e_{gh}$ for all $g, h \in G$; thus

$$\left(\sum_{g\in G}\lambda_g e_g\right)\left(\sum_{g\in G}\mu_g e_g\right)=\sum_{g\in G}\left(\sum_{\substack{g_1,g_2\in G\\g_1g_2=g}}\lambda_{g_1}\mu_{g_2}\right)e_g.$$

Remark

The ring K[G] is commutative iff. G is Abelian. It contains subring $\{\lambda e_{1_G}, \lambda \in K\}$ which is a copy of K.

G-modules

A K[G]-module = a representation of G over K. Indeed, a K[G]-module M is a K-vector space by

$$\lambda m = (\lambda e_{1_G})m \quad (\lambda \in K, m \in M),$$

and a representation by

$$\begin{array}{rcl} \rho: G & \longrightarrow & \mathsf{GL}(M) \\ g & \longmapsto & (m \mapsto e_g m). \end{array}$$

Conversely, given a K-vector space V and $\rho : G \longrightarrow GL(V)$, we put a K[G]-module structure on V by

$$\left(\sum_{g\in G}\lambda_g e_g\right)\mathbf{v}=\sum_{g\in G}\lambda_g
ho(g)(\mathbf{v}) \quad (\lambda_g\in K,\mathbf{v}\in V).$$

A K[G]-module = a representation of G over K.

Similarly, a sub-K[G]-module = a subrepresentation, and K[G]-module morphisms = representation morphisms.

For example, we see immediately that if $f : V \longrightarrow W$ is a morphism of representations of G, then Ker $f \subseteq V$ and Im $f \subseteq W$ are subrepresentations.

Simple and indecomposable modules

Let R be a ring, and M an R-module.

Definition (Simple module)

M is simple if $M \neq \{0\}$ and its only submodules are $\{0\}$ and *M*.

Definition (Indecomposable module)

M is indecomposable if it cannot be expressed non-trivially as

$$M=\bigoplus_{i\in I}M_i.$$

So irreducible representations = simple K[G]-modules, and indecomposable = indecomposable.

Semi-simplicity

Definition (Semi-simple module)

Let R be a ring. An R-module M is <u>semi-simple</u> if it can be decomposed as

$$M = \bigoplus_{i \in I} M_i$$

with the M_i simple *R*-submodules.

Since the M_i are simple, this is a "complete decomposition".

So saying that a representation is semi-simple means that it is "completely decomposable".

Definition (Supplement to a submodule)

Let R be a ring, M an R-module, and $N \subseteq M$ a submodule. A supplement to N is a submodule $N' \subseteq M$ such that $M = N \oplus N'$.

This means that every $m \in M$ can be written as m = n + n', $n \in N$, $n' \in N'$, and that $N \cap N' = \{0\}$.

Remark

In general, a supplement does not exist!

Counter-example

Take $R = \mathbb{Z}$, $M = \mathbb{Z}$, $N = 2\mathbb{Z}$. Then N does not have a supplement: if $\mathbb{Z} = 2\mathbb{Z} \oplus N'$, then given $n' \in N'$, we have $2n' \in N' \cap 2\mathbb{Z}$, absurd.

Theorem

Let R be a ring, and M an R-module. Assume that there is no infinite chain $M \supseteq M_0 \supsetneq M_1 \supsetneq M_2 \supsetneq \cdots$ of submodules. Then

M semi-simple \iff Every submodule of M has a supplement.

Proof.

⇐: If *M* is already simple, OK. Else let {0} ⊆ N ⊆ M be a submodule. By assumption, it has a supplement N', so M = N ⊕ N'. Iterate on N and N'. This terminates, else we would have an infinite descending chain.

Semi-simplicity vs. supplements

Theorem

Let R be a ring, and M an R-module. Assume that there is no infinite chain $M \supseteq M_0 \supsetneq M_1 \supsetneq M_2 \supsetneq \cdots$ of submodules. Then

M semi-simple \iff Every submodule of M has a supplement.

Proof.

• \Rightarrow : Write $M = \bigoplus_{i \in I} M_i$ with the M_i simple submodules. Then I is finite, else we would have an infinite chain. If $N \subseteq M$ is a submodule, let $J \subseteq I$ be maximal among subsets such that $M' = N \oplus \bigoplus_{i \in J} M_i$ is still a direct sum. Claim: M' = M, so that $\bigoplus_{i \in J} M_i$ is a supplement of N. Indeed, else we would have $M_i \not\subseteq M'$ for at least one i, so $M' \cap M_i = \{0\}$ since M_i is simple. But then we could include i in J, contradiction.

Maschke's theorem

Theorem (Maschke)

Let K be a field, and let G be a finite group of order n = #G. If $n \neq 0 \in K$, then every representation of G over K is semi-simple.

Counter-example

We have seen that the permutation representation induced by $S_3 \circlearrowright \{1, 2, 3\}$ is not semisimple when $K = \mathbb{Z}/3\mathbb{Z}$.

Remark

In general, the decomposition is not unique! For example, if V has degree $n \ge 2$ and is equipped with the trivial action of G, then $V = \mathbb{1} \oplus \cdots \oplus \mathbb{1}$ in many ways.

Reminder: projections

Theorem

Let K be a field, and V a K-vector space. If $V = V_1 \oplus V_2$, the projection on V_1 parallel to V_2 is

$$\pi: \begin{array}{ccc} V & \longrightarrow & V \\ & v_1 + v_2 & \longmapsto & v_1. \end{array}$$

It is linear, and satisfies Im $\pi = V_1$, Ker $\pi = V_2$, and $\pi^2 = \pi$.

Conversely, if $\pi \in \operatorname{End}_{\kappa}(V)$ satisfies $\pi^2 = \pi$, then

 $V = \operatorname{Im} \pi \oplus \operatorname{Ker} \pi,$

and π is the projection on Im π parallel to Ker π .

Proof of Maschke's theorem

Let V be a representation of G over K; for simplicity we assume dim $V < \infty$. Then there cannot be an infinite chain $V \supseteq V_0 \supseteq V_1 \supseteq V_2 \cdots$.

Let V_1 be a subrepresentation of G; we want to prove that it has a supplement.

Let $V_2 \subseteq V$ be such that $V = V_1 \oplus V_2$ as *K*-vector spaces, and let π be the projection on V_1 parallel to V_2 . NB in principle, V_2 need not be a subrepresentation, nor π a morphism of representations.

Define
$$\Pi: V \longrightarrow V$$

 $v \longmapsto \frac{1}{\#G} \sum_{g \in G} g\pi(g^{-1}v).$

Proof of Maschke's theorem

Let V_1 be a subrepresentation of G; we want to prove that it has a supplement.

Let $V_2 \subseteq V$ be such that $V = V_1 \oplus V_2$ as *K*-vector spaces, and let π be the projection on V_1 parallel to V_2 .

Define
$$\Pi: V \longrightarrow V$$

 $v \longmapsto \frac{1}{\#G} \sum_{g \in G} g\pi(g^{-1}v).$

Since V_1 is a subrepresentation, it is stable by G; therefore $g\pi(\dots) \in V_1$, so $\operatorname{Im} \Pi \subseteq V_1$. But also, for all $v_1 \in V_1$, we have $g^{-1}v_1 \in V_1$, so $\pi(g^{-1}v_1) = g^{-1}v_1$, so $\Pi(v_1) = v_1$. Hence $\operatorname{Im} \Pi = V_1$, and $\Pi^2 = \Pi$ is a projection so

$$V = \operatorname{Im} \Pi \oplus \operatorname{Ker} \Pi = V_1 \oplus \operatorname{Ker} \Pi.$$

Proof of Maschke's theorem

Define
$$\Pi: V \longrightarrow V$$

 $v \longmapsto \frac{1}{\#G} \sum_{g \in G} g\pi(g^{-1}v).$

We have

$$V = \operatorname{Im} \Pi \oplus \operatorname{Ker} \Pi = V_1 \oplus \operatorname{Ker} \Pi.$$

Furthermore, Π is a morphism of representations. Indeed, whenever $h \in G$ and $v \in V$, we have $h\Pi(v) = h \frac{1}{\#G} \sum_{g \in G} g\pi(g^{-1}v) = \frac{1}{\#G} \sum_{g \in G} hg\pi(g^{-1}v) = \frac{1}{\#G} \sum_{g \in G} hg\pi((hg)^{-1}hv) = \frac{1}{\#G} \sum_{g \in G} g\pi(g^{-1}hv) = \Pi(hv),$ as $\begin{array}{c} G \longrightarrow G \\ g \longmapsto hg \end{array}$ is a bijection.

Thus $V = V_1 \oplus \text{Ker } \Pi$ with Ker Π a subrepresentation.