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Modules over a ring
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Modules

Definition (Module, morphism of modules)

Let R be a ring. An R-module is a set M with two laws

M ×M −→ M
(m, n) 7−→ m + n,

R ×M −→ M
(λ,m) 7−→ λm,

such that (M ,+) is an Abelian group, and that
for all λ, µ ∈ R and m, n ∈ M , we have

λ(µm) = (λµ)m, 1m = m,
(λ+ µ)m = (λm) + (µm), λ(m + n) = (λm) + (λn).

A morphism f : M −→ N between R-modules is an R-linear
map, meaning

f (m +m′) = f (m) + f (m′) and f (λm) = λf (m)

for all m,m′ ∈ M and λ ∈ R .
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Modules: examples

Example

If R is actually a field, then R-module = R-vector space,
and module morphism = linear transformation.

Example

Let R be a ring, and let n ∈ N. Then
Rn = {(x1, · · · , xn) | xi ∈ R}

is an R-module.

Example

For R = Z, Z-module = Abelian group:

ng = g + · · ·+ g︸ ︷︷ ︸
n times

(n ∈ Z, g ∈ G )

and module morphism = group morphism.

Nicolas Mascot Group representations



Modules: notation

Let R be a ring. Given two R-modules M ,N , we denote the
set of morphisms from M to N by HomR(M ,N). It is actually
an Abelian group for pointwise addition.

In the case M = N , we write EndR(M) = HomR(M ,M). It is
actually a ring, where multiplication is given by composition.

Example

If R is actually a field, and if M is an R-vector space of
dimension n, then EndR(M) ≃ Mn(R).
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Submodules and direct sums

Definition (Submodule)

Let M be an R-module. A submodule of M is a subset of M
which is nonempty and closed under + and under
multiplication by R .

Example

Let M = R , viewed as an R-module. Then the submodules of
M are the ideals of R .

Proposition

Let f : M −→ N be a morphism of modules. Then Ker f is a
submodule of M , and Im f is a submodule of N .
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Direct sums

Definition (Direct sum)

Let M be an R-module, and (Mi)i∈I a collection of submodules
of M . We say that M =

⊕
i∈I Mi if every element m ∈ M can

be expressed as m =
∑finite

i∈I mi with mi ∈ Mi in a unique way.

Example

R[x ] =
⊕
n∈Z≥0

Rxn.

Remark

In the case of 2 submodules, M = M1 ⊕M2 iff. every m ∈ M
is of the form m = m1 +m2, m1 ∈ M1, m2 ∈ M2, and if
M1 ∩M2 = {0}. Indeed, if m = m1 +m2 = m′

1 +m′
2, then

m′
1 −m1 = m2 −m′

2 ∈ M1 ∩M2.
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Representations as modules
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The group ring

Let K be a field, and X be a set. Recall that

K [X ] =

{
finite∑
x∈X

λxex

∣∣∣ λx ∈ K

}
=
⊕
x∈X

Kex

is the K -vector space with basis {ex}x∈X indexed by X .

If X = G is actually a group, then K [G ] is actually a ring by
the rule egeh = egh for all g , h ∈ G ; thus(∑

g∈G

λgeg

)(∑
g∈G

µgeg

)
=
∑
g∈G

 ∑
g1,g2∈G
g1g2=g

λg1µg2

 eg .

Remark

The ring K [G ] is commutative iff. G is Abelian.
It contains subring {λe1G , λ ∈ K} which is a copy of K .
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G -modules

A K [G ]-module = a representation of G over K .
Indeed, a K [G ]-module M is a K -vector space by

λm = (λe1G )m (λ ∈ K ,m ∈ M),

and a representation by

ρ : G −→ GL(M)
g 7−→ (m 7→ egm).

Conversely, given a K -vector space V and ρ : G −→ GL(V ),
we put a K [G ]-module structure on V by(∑

g∈G

λgeg

)
v =

∑
g∈G

λgρ(g)(v) (λg ∈ K , v ∈ V ).
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G -modules

A K [G ]-module = a representation of G over K .

Similarly, a sub-K [G ]-module = a subrepresentation,
and K [G ]-module morphisms = representation morphisms.

For example, we see immediately that if f : V −→ W is a
morphism of representations of G , then Ker f ⊆ V and
Im f ⊆ W are subrepresentations.
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Simple and indecomposable modules

Let R be a ring, and M an R-module.

Definition (Simple module)

M is simple if M ̸= {0} and its only submodules are {0} and M .

Definition (Indecomposable module)

M is indecomposable if it cannot be expressed non-trivially as

M =
⊕
i∈I

Mi .

So irreducible representations = simple K [G ]-modules, and
indecomposable = indecomposable.
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Semi-simplicity
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Semi-simple modules

Definition (Semi-simple module)

Let R be a ring. An R-module M is semi-simple if it can be
decomposed as

M =
⊕
i∈I

Mi

with the Mi simple R-submodules.

Since the Mi are simple, this is a “complete decomposition”.

So saying that a representation is semi-simple means that it is
“completely decomposable”.
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Supplements in a module

Definition (Supplement to a submodule)

Let R be a ring, M an R-module, and N ⊆ M a submodule. A
supplement to N is a submodule N ′ ⊆ M such that
M = N ⊕ N ′.

This means that every m ∈ M can be written as m = n + n′,
n ∈ N , n′ ∈ N ′, and that N ∩ N ′ = {0}.

Remark

In general, a supplement does not exist!

Counter-example

Take R = Z, M = Z, N = 2Z. Then N does not have a
supplement: if Z = 2Z⊕ N ′, then given n′ ∈ N ′, we have
2n′ ∈ N ′ ∩ 2Z, absurd.
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Semi-simplicity vs. supplements

Theorem

Let R be a ring, and M an R-module. Assume that there is no
infinite chain M ⊇ M0 ⊋ M1 ⊋ M2 ⊋ · · · of submodules. Then

M semi-simple ⇐⇒ Every submodule of M has a supplement.

Proof.

⇐: If M is already simple, OK. Else let {0} ⊊ N ⊊ M be
a submodule. By assumption, it has a supplement N ′,
so M = N ⊕ N ′. Iterate on N and N ′. This terminates,
else we would have an infinite descending chain.
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Semi-simplicity vs. supplements

Theorem

Let R be a ring, and M an R-module. Assume that there is no
infinite chain M ⊇ M0 ⊋ M1 ⊋ M2 ⊋ · · · of submodules. Then

M semi-simple ⇐⇒ Every submodule of M has a supplement.

Proof.

⇒: Write M =
⊕

i∈I Mi with the Mi simple submodules.
Then I is finite, else we would have an infinite chain.
If N ⊆ M is a submodule, let J ⊆ I be maximal among
subsets such that M ′ = N ⊕

⊕
i∈J Mi is still a direct sum.

Claim: M ′ = M , so that
⊕

i∈J Mi is a supplement of N .
Indeed, else we would have Mi ̸⊆ M ′ for at least one i ,
so M ′ ∩Mi = {0} since Mi is simple. But then we could
include i in J , contradiction.
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Maschke’s theorem
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Maschke’s theorem

Theorem (Maschke)

Let K be a field, and let G be a finite group of order n = #G .
If n ̸= 0 ∈ K , then every representation of G over K is
semi-simple.

Counter-example

We have seen that the permutation representation induced by
S3 ⟳ {1, 2, 3} is not semisimple when K = Z/3Z.

Remark

In general, the decomposition is not unique! For example, if V
has degree n ⩾ 2 and is equipped with the trivial action of G ,
then V = 1⊕ · · · ⊕ 1 in many ways.
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Reminder: projections

Theorem

Let K be a field, and V a K -vector space.
If V = V1 ⊕ V2, the projection on V1 parallel to V2 is

π : V −→ V
v1 + v2 7−→ v1.

It is linear, and satisfies Im π = V1, Ker π = V2, and π2 = π.

Conversely, if π ∈ EndK (V ) satisfies π2 = π, then

V = Imπ ⊕ Ker π,

and π is the projection on Im π parallel to Ker π.
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Proof of Maschke’s theorem

Let V be a representation of G over K ; for simplicity we
assume dimV < ∞. Then there cannot be an infinite chain

V ⊇ V0 ⊋ V1 ⊋ V2 · · · .

Let V1 be a subrepresentation of G ; we want to prove that it
has a supplement.

Let V2 ⊆ V be such that V = V1 ⊕ V2 as K -vector spaces,
and let π be the projection on V1 parallel to V2.
NB in principle, V2 need not be a subrepresentation, nor π a
morphism of representations.

Define Π : V −→ V

v 7−→ 1

#G

∑
g∈G

gπ(g−1v).
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Proof of Maschke’s theorem

Let V1 be a subrepresentation of G ; we want to prove that it
has a supplement.

Let V2 ⊆ V be such that V = V1 ⊕ V2 as K -vector spaces,
and let π be the projection on V1 parallel to V2.

Define Π : V −→ V

v 7−→ 1

#G

∑
g∈G

gπ(g−1v).

Since V1 is a subrepresentation, it is stable by G ;
therefore gπ(· · · ) ∈ V1, so ImΠ ⊆ V1.
But also, for all v1 ∈ V1, we have g−1v1 ∈ V1,
so π(g−1v1) = g−1v1, so Π(v1) = v1.
Hence ImΠ = V1, and Π2 = Π is a projection so

V = ImΠ⊕ Ker Π = V1 ⊕ Ker Π.
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Proof of Maschke’s theorem

Define Π : V −→ V

v 7−→ 1

#G

∑
g∈G

gπ(g−1v).

We have
V = ImΠ⊕ Ker Π = V1 ⊕ Ker Π.

Furthermore, Π is a morphism of representations.
Indeed, whenever h ∈ G and v ∈ V , we have
hΠ(v) = h 1

#G

∑
g∈G gπ(g−1v) = 1

#G

∑
g∈G hgπ(g−1v) =

1
#G

∑
g∈G hgπ((hg)−1hv) = 1

#G

∑
g∈G gπ(g−1hv) = Π(hv),

as
G −→ G
g 7−→ hg

is a bijection.

Thus V = V1 ⊕ Ker Π with Ker Π a subrepresentation.
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