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Erlangen

Philosophy: Groups do not exist in the void, they are meant to
move points of “spaces”.

Example

The linear group GLn(R) (n ∈ N) moves the points of the
space Rn.

The symmetric group Sn (n ∈ N) permutes the elements
of {1, 2, · · · , n}.
The cyclic group Cn = Z/nZ (n ∈ N) can be thought of
a group of rotations in the plane which stabilise a regular
n-gon.

Etc.

We get a much clearer understanding of groups this way!
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Group actions

Definition (Group action)

Let G be a group, and X be a set. An action G � X of G

on X is a map
G × X −→ X
(g , x) 7−→ g · x such that

(gh) · x = g · (h · x) and 1G · x = x for all g , h ∈ G and x ∈ X .

Example

A Rubik’s cube is not a group, but a set X of configurations
on which a group of motions G acts.

Remark

The axioms imply that for each g ∈ G , the map

g :
X −→ X
x 7−→ g · x is a bijection, with inverse g−1. Thus an

action of G on X can also be defined as a morphism of G to
the group of bijections X −→ X .
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Group representations

Definition (Linear representation, degree)

Let K for a field, and n ∈ N. A (linear) representation of G
over K of degree n is a group morphism

ρ : G −→ GLn(K ).

So a representation of a group G is an action of G on a set
which is a vector space, and such that every g ∈ G acts by
linear transformations.
 represent the elements of G by matrices, hence the name.
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First examples of representations

Example

GLn(R) � Rn is actually a representation of GLn(R).

C× −→ GL2(R)

a + bi 7−→
(
a −b
b a

)
is a representation of C× of

degree 2 over R.

K −→ GL2(K )

x 7−→
(

1 x
0 1

)
is a representation of (K ,+) of

degree 2 over K .

The trivial map G −→ GLn(K ) is a representation.
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Alternative definition

Definition

Alternatively, a representation of G over K is a group
morphism ρ : G −→ GL(V ), where V is a K -vector space.

By choosing a basis of V , we get an isomorphism

GL(V ) ' GLdimV (K ),

so we recover the previous definition.

Remark

Instead of ρ(g)(v), we often write ρg (v), or even gv if ρ is
clear from the context.
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Permutation representations

Given a set X and a field K , we define the vector space

K [X ] =

{
finite∑
x∈X

λxex

∣∣∣∣ λx ∈ K

}

with basis {ex , x ∈ X} indexed by X .

If a group G acts on X , then we get a representation

ρ : G −→ GL(K [X ])

defined by gex = eg ·x for all g ∈ G , x ∈ X .
It is called the permutation representation attached to G � X .
Its degree is #X .
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Permutation representations

K [X ] =

{
finite∑
x∈X

λxex

∣∣∣∣ λx ∈ K

}
If a group G acts on X , then we get a representation

ρ : G −→ GL(K [X ])

defined by gex = eg ·x for all g ∈ G , x ∈ X .
It is called the permutation representation attached to G � X .
Its degree is #X .

Example

Let G = S3 � X = {1, 2, 3}.
Then for σ = (123), τ = (12) ∈ G , we have

ρ(σ) =
(

0 0 1
1 0 0
0 1 0

)
, ρ(τ) =

(
0 1 0
1 0 0
0 0 1

)
.
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Permutation representations

K [X ] =

{
finite∑
x∈X

λxex

∣∣∣∣ λx ∈ K

}

If a group G acts on X , then we get a representation

ρ : G −→ GL(K [X ])

defined by gex = eg ·x for all g ∈ G , x ∈ X .
It is called the permutation representation attached to G � X .
Its degree is #X .

Definition (Regular representation)

In the special case where X = G acts on itself by g · x = gx ,
the corresponding representation ρ : G −→ GL(K [G ]) is called
the regular representation of G over K .
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Morphisms of representations
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Equivalent representations

Let ρ : G −→ GL(V ) be a representation of degree n over K .
By picking a basis B1 of V , we get ρ1 : G −→ GLn(K ).
If we pick another basis B2 of V , we get ρ2 : G −→ GLn(K ),
which is related to ρ1 by

ρ2(g) = P−1ρ1(g)P

for all g ∈ G , where P is the transition matrix from B1 to B2.

Definition (Equivalent representations)

We say that ρ1 and ρ2 are equivalent.
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Example of equivalent representations

1

2

3

By labelling the vertices of an equilateral triangle by 1, 2, 3, we
get a representation ρ : S3 −→ GL(R2). For example, for
σ = (123) ∈ S3 and τ = (12) ∈ S3, we have

ρ(σ) = rotation, ρ(τ) = symmetry.

With respect to the standard basis of R2, we get

ρ1 : S3 −→ GL2(R), ρ1(σ) =
(
−1/2 −

√
3/2√

3/2 −1/2

)
, ρ1(τ) = ( 1 0

0 −1 ) .

But with respect to a better basis, we get the equivalent

ρ2 : S3 −→ GL2(R), ρ2(σ) = ( −1 −1
1 0 ) , ρ2(τ) = ( 1 1

0 −1 ) .

Nicolas Mascot Group representations



Example of equivalent representations

1

2

3

By labelling the vertices of an equilateral triangle by 1, 2, 3, we
get a representation ρ : S3 −→ GL(R2). For example, for
σ = (123) ∈ S3 and τ = (12) ∈ S3, we have

ρ(σ) = rotation, ρ(τ) = symmetry.

With respect to the standard basis of R2, we get

ρ1 : S3 −→ GL2(R), ρ1(σ) =
(
−1/2 −

√
3/2√

3/2 −1/2

)
, ρ1(τ) = ( 1 0

0 −1 ) .

But with respect to a better basis, we get the equivalent

ρ2 : S3 −→ GL2(R), ρ2(σ) = ( −1 −1
1 0 ) , ρ2(τ) = ( 1 1

0 −1 ) .

Nicolas Mascot Group representations



Example of equivalent representations

1

2

3

By labelling the vertices of an equilateral triangle by 1, 2, 3, we
get a representation ρ : S3 −→ GL(R2). For example, for
σ = (123) ∈ S3 and τ = (12) ∈ S3, we have

ρ(σ) = rotation, ρ(τ) = symmetry.

With respect to the standard basis of R2, we get

ρ1 : S3 −→ GL2(R), ρ1(σ) =
(
−1/2 −

√
3/2√

3/2 −1/2

)
, ρ1(τ) = ( 1 0

0 −1 ) .

But with respect to a better basis, we get the equivalent

ρ2 : S3 −→ GL2(R), ρ2(σ) = ( −1 −1
1 0 ) , ρ2(τ) = ( 1 1

0 −1 ) .

Nicolas Mascot Group representations



Morphisms of representations

Definition (Morphism of representations)

Let G be a group, K a field, and
ρ1 : G −→ GL(V1), ρ2 : G −→ GL(V2)

be two representations of G over K .
A morphism from ρ1 to ρ2 is a linear map T : V1 −→ V2 such
that

T
(
ρ1(g)(v)

)
= ρ2(g)

(
T (v)

)
for all g ∈ G and v ∈ V1.

An isomorphism of representations is a bijective morphism.
Isomorphic representations are also called equivalent

.

The set of morphisms is a vector space denoted by
HomG (V1,V2), or by EndG (V1) if V1 = V2.
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New from old
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The trivial representation

Definition (Trivial representation)

Let G be a group, and K be a field. We may view V = K as a
vector space over itself.
The trivial representation 1 is the trivial morphism

1 : G −→ GL(V ).
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Direct sum

Let V ,W be representations of a group G over K . Then their
direct sum V ⊕W ' V ×W is also a representation of G , by
the rule

g(v ,w) = (gv , gw) (g ∈ G , v ∈ V ,w ∈ W ).
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Linear transformations

Let V ,W be representations of a group G over K . Then the
space Hom(V ,W ) of linear maps from V to W becomes a
representation of G by the rule

(gT )(v) = g(T (g−1v)) (g ∈ G ,T ∈ Hom(V ,W ), v ∈ V ).

Special case: if V = W , then we write End(V ) = Hom(V ,V ).

Special case: if W = 1, then Hom(V ,W ) = V ∨ is the linear
dual of V , with G action

(g`)(v) = `(g−1v) (g ∈ G , ` ∈ V ∨, v ∈ V ).
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Irreducibility &
indecomposability
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Subrepresentations

Let V be a representation of G .

Definition (Subrepresentation)

A subrepresentation of V is a subspace W ⊆ V which is stable
by G .

Example

V G = {v ∈ V | gv = v for all g ∈ G}

is a subrepresentation, which is isomorphic to a direct sum of
copies of 1.

Remark

Hom(V ,W )G = HomG (V ,W ).
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Irreducible representations

Definition (Irreducible)

V is irreducible if its only subrepresentations are {0} and V .

Counter-example

Consider again G = S3 � X = {1, 2, 3}, and let V = K [X ]
the corresponding permutation representation. The vector
v = e1 + e2 + e3 is invariant by G , so it spans a
subsrepresentation W ( V of degree 1. Therefore V is not
irreducible.

Note that actually, W = V G ' 1.
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Indecomposability

Definition

A representation V is indecomposable if is it not isomorphic to
a direct sum V1 ⊕ V2 of nontrivial representations
V1,V2 6= {0}.

So irreducible =⇒ indecomposable.

Counter-example

The converse does not hold!

For instance, take G = (K ,+) and ρ :
G −→ GL2(K )

x 7−→
(

1 x
0 1

)
.

Then ρ is reducible, since the subspace of K 2 spanned by the
first vector is a subrepresentation ' 1.
But ρ is indecomposable, because this subrepresentation does
not have a supplement.
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Effect on matrices

Let ρ : G −→ GL(V ) be a representation.

ρ is reducible iff. there exists a basis of V such that

∀g ∈ G , ρ(g) =

(
∗ ∗
0 ∗

)
.

ρ is decomposable iff. there exists a basis of V such that

∀g ∈ G , ρ(g) =

(
∗ 0
0 ∗

)
.
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Effect on matrices

Let ρ : G −→ GLn(K ) be a representation.

ρ is reducible iff. there exists P ∈ GLn(K ) such that

∀g ∈ G , P−1ρ(g)P =

(
∗ ∗
0 ∗

)
.

ρ is decomposable iff. there exists a basis of V such that

∀g ∈ G , P−1ρ(g)P =

(
∗ 0
0 ∗

)
.

Nicolas Mascot Group representations



An example of (in)decomposition

Example

Consider once more the permutation representation V = K [X ]
attached to G = S3 � X = {1, 2, 3}.

We have already seen that the span W of e1 + e2 + e3 is a
nontrivial subrepresentation. Does it have a supplement?

Consider W ′ =

{∑
x∈X

λxex ∈ V

∣∣∣∣ ∑
x∈X

λx = 0

}
.

It is also a subrepresentation.

If 3 6= 0 in K , then V = W ⊕W ′, so V is decomposable.

But if K = Z/3Z, then W ⊂ W ′, and in fact V is
indecomposable.
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