MAU34104 Group representations 1 - Introduction

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: February 4, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Group actions

Philosophy: Groups do not exist in the void, they are meant to move points of "spaces".

Example

- The linear group GL_n(ℝ) (n ∈ ℕ) moves the points of the space ℝⁿ.
- The symmetric group S_n (n ∈ ℕ) permutes the elements of {1, 2, · · · , n}.
- The cyclic group C_n = Z/nZ (n ∈ N) can be thought of a group of rotations in the plane which stabilise a regular n-gon.
- Etc.

We get a much clearer understanding of groups this way!

Group actions

Definition (Group action)

Let G be a group, and X be a set. An <u>action</u> $G \circlearrowright X$ of G on X is a map $\begin{array}{ccc} G \times X & \longrightarrow & X \\ (g,x) & \longmapsto & g \cdot x \end{array}$ such that $(gh) \cdot x = g \cdot (h \cdot x)$ and $1_G \cdot x = x$ for all $g, h \in G$ and $x \in X$.

Example

A Rubik's cube is <u>not</u> a group, but a set X of configurations on which a group of motions G acts.

Remark

The axioms imply that for each $g \in G$, the map $g: \begin{array}{ccc} X & \longrightarrow & X \\ x & \longmapsto & g \cdot x \end{array}$ is a bijection, with inverse g^{-1} . Thus an action of G on X can also be defined as a morphism of G to the group of bijections $X \longrightarrow X$.

Definition (Linear representation, degree)

Let K for a field, and $n \in \mathbb{N}$. A <u>(linear) representation</u> of G over K of <u>degree</u> n is a group morphism

 $\rho: G \longrightarrow \operatorname{GL}_n(K).$

So a <u>representation</u> of a group G is an action of G on a set which is a vector space, and such that every $g \in G$ acts by linear transformations.

 \rightsquigarrow represent the elements of *G* by matrices, hence the name.

First examples of representations

degree 2 over K.

Example

• $\operatorname{GL}_n(\mathbb{R}) \circlearrowright \mathbb{R}^n$ is actually a representation of $\operatorname{GL}_n(\mathbb{R})$.

$$\begin{array}{cccc} \mathbb{C}^{\times} & \longrightarrow & \operatorname{GL}_{2}(\mathbb{R}) \\ \bullet & a + bi & \longmapsto & \begin{pmatrix} a & -b \\ b & a \end{pmatrix} & \text{is a representation of } \mathbb{C}^{\times} & \text{of} \\ \text{degree 2 over } \mathbb{R}. \\ & \mathcal{K} & \longrightarrow & \operatorname{GL}_{2}(\mathcal{K}) \\ \bullet & x & \longmapsto & \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} & \text{is a representation of } (\mathcal{K}, +) & \text{of} \end{array}$$

• The trivial map $G \longrightarrow \operatorname{GL}_n(K)$ is a representation.

Definition

Alternatively, a representation of G over K is a group morphism $\rho: G \longrightarrow GL(V)$, where V is a K-vector space.

By choosing a basis of V, we get an isomorphism

$$\operatorname{GL}(V) \simeq \operatorname{GL}_{\dim V}(K),$$

so we recover the previous definition.

Remark

Instead of $\rho(g)(v)$, we often write $\rho_g(v)$, or even gv if ρ is clear from the context.

Given a set X and a field K, we define the vector space

$$\mathcal{K}[X] = \left\{ \sum_{x \in X}^{\text{finite}} \lambda_x e_x \mid \lambda_x \in \mathcal{K} \right\}$$

with basis $\{e_x, x \in X\}$ indexed by X.

If a group G acts on X, then we get a representation

$$\rho: G \longrightarrow \mathsf{GL}(K[X])$$

defined by $ge_x = e_{g \cdot x}$ for all $g \in G$, $x \in X$. It is called the <u>permutation representation</u> attached to $G \circlearrowright X$. Its degree is #X.

Permutation representations

$$\mathcal{K}[X] = \left\{ \sum_{x \in X}^{\mathsf{finite}} \lambda_x e_x \mid \lambda_x \in \mathcal{K}
ight\}$$

If a group G acts on X, then we get a representation

$$\rho: G \longrightarrow \mathsf{GL}(K[X])$$

defined by $ge_x = e_{g \cdot x}$ for all $g \in G$, $x \in X$. It is called the permutation representation attached to $G \circlearrowright X$. Its degree is #X.

Example

Let
$$G = S_3 \circlearrowright X = \{1, 2, 3\}.$$

Then for $\sigma = (123), \tau = (12) \in G$, we have
 $\rho(\sigma) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \rho(\tau) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Permutation representations

$$\mathcal{K}[X] = \left\{ \sum_{x \in X}^{\mathsf{finite}} \lambda_x e_x \mid \lambda_x \in \mathcal{K} \right\}$$

If a group G acts on X, then we get a representation

$$\rho: G \longrightarrow \operatorname{GL}(K[X])$$

defined by $ge_x = e_{g \cdot x}$ for all $g \in G$, $x \in X$. It is called the permutation representation attached to $G \circlearrowright X$. Its degree is #X.

Definition (Regular representation)

In the special case where X = G acts on itself by $g \cdot x = gx$, the corresponding representation $\rho : G \longrightarrow GL(K[G])$ is called the <u>regular representation</u> of G over K.

Let $\rho : G \longrightarrow GL(V)$ be a representation of degree *n* over *K*. By picking a basis \mathcal{B}_1 of *V*, we get $\rho_1 : G \longrightarrow GL_n(K)$. If we pick another basis \mathcal{B}_2 of *V*, we get $\rho_2 : G \longrightarrow GL_n(K)$, which is related to ρ_1 by

$$\rho_2(g) = P^{-1}\rho_1(g)P$$

for all $g \in G$, where P is the transition matrix from \mathcal{B}_1 to \mathcal{B}_2 .

Definition (Equivalent representations)

We say that ρ_1 and ρ_2 are <u>equivalent</u>.

Example of equivalent representations

By labelling the vertices of an equilateral triangle by 1, 2, 3, we get a representation $\rho : S_3 \longrightarrow \text{GL}(\mathbb{R}^2)$. For example, for $\sigma = (123) \in S_3$ and $\tau = (12) \in S_3$, we have $\rho(\sigma) = \text{rotation}, \quad \rho(\tau) = \text{symmetry}.$

Example of equivalent representations

By labelling the vertices of an equilateral triangle by 1, 2, 3, we get a representation $\rho : S_3 \longrightarrow GL(\mathbb{R}^2)$. For example, for $\sigma = (123) \in S_3$ and $\tau = (12) \in S_3$, we have $\rho(\sigma) = \text{rotation}, \quad \rho(\tau) = \text{symmetry}.$

With respect to the standard basis of \mathbb{R}^2 , we get

$$\rho_1: S_3 \longrightarrow \mathsf{GL}_2(\mathbb{R}), \quad \rho_1(\sigma) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}, \quad \rho_1(\tau) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Example of equivalent representations

By labelling the vertices of an equilateral triangle by 1, 2, 3, we get a representation $\rho: S_3 \longrightarrow GL(\mathbb{R}^2)$. For example, for $\sigma = (123) \in S_3$ and $\tau = (12) \in S_3$, we have $\rho(\sigma) = \text{rotation}, \quad \rho(\tau) = \text{symmetry}.$

With respect to the standard basis of \mathbb{R}^2 , we get

$$\rho_1: S_3 \longrightarrow \mathsf{GL}_2(\mathbb{R}), \quad \rho_1(\sigma) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}, \quad \rho_1(\tau) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

But with respect to a better basis, we get the equivalent

$$\rho_2: S_3 \longrightarrow \mathsf{GL}_2(\mathbb{R}), \quad \rho_2(\sigma) = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \quad \rho_2(\tau) = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}.$$

Definition (Morphism of representations)

Let G be a group, K a field, and $\rho_1 : G \longrightarrow GL(V_1), \quad \rho_2 : G \longrightarrow GL(V_2)$ be two representations of G over K. A <u>morphism</u> from ρ_1 to ρ_2 is a linear map $T : V_1 \longrightarrow V_2$ such that

$$T(\rho_1(g)(v)) = \rho_2(g)(T(v))$$

for all $g \in G$ and $v \in V_1$.

Definition (Morphism of representations)

Let G be a group, K a field, and $\rho_1 : G \longrightarrow GL(V_1), \quad \rho_2 : G \longrightarrow GL(V_2)$ be two representations of G over K. A morphism from ρ_1 to ρ_2 is a linear map $T : V_1 \longrightarrow V_2$ such that

$$T(gv) = gT(v)$$

for all $g \in G$ and $v \in V_1$.

Definition (Morphism of representations)

Let G be a group, K a field, and $\rho_1 : G \longrightarrow GL(V_1), \quad \rho_2 : G \longrightarrow GL(V_2)$ be two representations of G over K. A <u>morphism</u> from ρ_1 to ρ_2 is a linear map $T : V_1 \longrightarrow V_2$ such that $V_1 \xrightarrow{\rho_1(g)} V_1$

$$V_2 \xrightarrow[\rho_2(g)]{\tau} V_2$$

for all $g \in G$.

Definition (Morphism of representations)

 $V_2 \xrightarrow{\rho_2(g)} V_2$

for all $g \in G$. An <u>isomorphism of representations</u> is a bijective morphism. Isomorphic representations are also called equivalent.

Definition (Morphism of representations)

for all $g \in G$.

The set of morphisms is a vector space denoted by $\operatorname{Hom}_G(V_1, V_2)$, or by $\operatorname{End}_G(V_1)$ if $V_1 = V_2$.

New from old

Definition (Trivial representation)

Let G be a group, and K be a field. We may view V = K as a vector space over itself.

The trivial representation $\mathbbm{1}$ is the trivial morphism

$$\mathbb{1}: G \longrightarrow \mathrm{GL}(V).$$

Let V, W be representations of a group G over K. Then their direct sum $V \oplus W \simeq V \times W$ is also a representation of G, by the rule

$$g(v,w) = (gv,gw) \quad (g \in G, v \in V, w \in W).$$

Let V, W be representations of a group G over K. Then the space Hom(V, W) of linear maps from V to W becomes a representation of G by the rule

$$(gT)(v) = g(T(g^{-1}v)) \quad (g \in G, T \in \operatorname{Hom}(V, W), v \in V).$$

Special case: if V = W, then we write End(V) = Hom(V, V).

Special case: if W = 1, then Hom $(V, W) = V^{\vee}$ is the linear dual of V, with G action

$$(g\ell)(v) = \ell(g^{-1}v) \quad (g \in G, \ell \in V^{\vee}, v \in V).$$

Irreducibility & indecomposability

Subrepresentations

Let V be a representation of G.

Definition (Subrepresentation)

A subrepresentation of V is a subspace $W \subseteq V$ which is stable by G.

Example

$$V^{G} = \{ v \in V \mid gv = v \text{ for all } g \in G \}$$

is a subrepresentation, which is isomorphic to a direct sum of copies of $\mathbbm{1}.$

Remark

$$\operatorname{Hom}(V,W)^{\mathsf{G}} = \operatorname{Hom}_{\mathsf{G}}(V,W).$$

Definition (Irreducible)

V is irreducible if its only subrepresentations are $\{0\}$ and V.

Counter-example

Consider again $G = S_3 \odot X = \{1, 2, 3\}$, and let V = K[X] the corresponding permutation representation. The vector $v = e_1 + e_2 + e_3$ is invariant by G, so it spans a subsrepresentation $W \subsetneq V$ of degree 1. Therefore V is not irreducible.

Note that actually, $W = V^G \simeq \mathbb{1}$.

Indecomposability

Definition

A representation V is indecomposable if is it not isomorphic to a direct sum $V_1 \oplus V_2$ of nontrivial representations $V_1, V_2 \neq \{0\}.$

So irreducible \implies indecomposable.

Counter-example

The converse does not hold!

The converse does not hold!
For instance, take
$$G = (K, +)$$
 and ρ :
 $x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$.

Then ρ is reducible, since the subspace of K^2 spanned by the first vector is a subrepresentation $\simeq 1$. But ρ is indecomposable, because this subrepresentation does not have a supplement.

Let $\rho: G \longrightarrow GL(V)$ be a representation.

• ρ is reducible iff. there exists a basis of V such that

$$\forall g \in G, \
ho(g) = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

• ρ is decomposable iff. there exists a basis of V such that

$$\forall g \in {\sf G}, \
ho(g) = egin{pmatrix} * & 0 \ 0 & * \end{pmatrix}.$$

Let $\rho: G \longrightarrow \operatorname{GL}_n(K)$ be a representation.

• ρ is reducible iff. there exists $P \in GL_n(K)$ such that

$$\forall g \in G, \ P^{-1}\rho(g)P = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}.$$

• ρ is decomposable iff. there exists a basis of V such that

$$\forall g \in G, \ P^{-1}
ho(g)P = egin{pmatrix} * & 0 \ 0 & * \end{pmatrix}$$

Example

Consider once more the permutation representation V = K[X] attached to $G = S_3 \circlearrowright X = \{1, 2, 3\}.$

Example

Consider once more the permutation representation V = K[X] attached to $G = S_3 \circlearrowright X = \{1, 2, 3\}.$

We have already seen that the span W of $e_1 + e_2 + e_3$ is a nontrivial subrepresentation. Does it have a supplement?

Example

Consider once more the permutation representation V = K[X] attached to $G = S_3 \circlearrowright X = \{1, 2, 3\}.$

We have already seen that the span W of $e_1 + e_2 + e_3$ is a nontrivial subrepresentation. Does it have a supplement?

Consider
$$W' = \left\{ \sum_{x \in X} \lambda_x e_x \in V \mid \sum_{x \in X} \lambda_x = 0 \right\}.$$

It is also a subrepresentation.

Example

Consider once more the permutation representation V = K[X] attached to $G = S_3 \circlearrowright X = \{1, 2, 3\}.$

We have already seen that the span W of $e_1 + e_2 + e_3$ is a nontrivial subrepresentation. Does it have a supplement?

Consider
$$W' = \left\{ \sum_{x \in X} \lambda_x e_x \in V \mid \sum_{x \in X} \lambda_x = 0 \right\}.$$

It is also a subrepresentation.

If $3 \neq 0$ in K, then $V = W \oplus W'$, so V is decomposable.

Example

Consider once more the permutation representation V = K[X] attached to $G = S_3 \circlearrowright X = \{1, 2, 3\}.$

We have already seen that the span W of $e_1 + e_2 + e_3$ is a nontrivial subrepresentation. Does it have a supplement?

Consider
$$W' = \left\{ \sum_{x \in X} \lambda_x e_x \in V \mid \sum_{x \in X} \lambda_x = 0 \right\}.$$

It is also a subrepresentation.

If $3 \neq 0$ in K, then $V = W \oplus W'$, so V is decomposable. But if $K = \mathbb{Z}/3\mathbb{Z}$, then $W \subset W'$, and in fact V is

indecomposable.