MAU34104 Group representations 5 - Induced representations

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: March 31, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Restriction and induction

Let G be a finite group, and let $H \leq G$ be a subgroup.

Definition (Restriction)

Let $\rho : G \longrightarrow GL(V)$ be a representation of character χ . We may <u>restrict</u> it into $\rho_{|H} : H \longrightarrow GL(V)$. We denote this restriction by $\operatorname{Res}_{H}^{G} \rho$, and its character by $\operatorname{Res}_{H}^{G} \chi$.

Remark

 $\operatorname{Res}_{H}^{G} \rho$ may be reducible even if ρ was irreducible!

Setup

Let G be a finite group, and let $H \leq G$ be a subgroup.

Definition (Restriction)

Let $\rho : G \longrightarrow GL(V)$ be a representation of character χ . We may <u>restrict</u> it into $\rho_{|H} : H \longrightarrow GL(V)$. We denote this restriction by $\operatorname{Res}_{H}^{G} \rho$, and its character by $\operatorname{Res}_{H}^{G} \chi$.

We want some sort of reverse construction: Given $\rho: H \longrightarrow GL(W)$, we would like to define the <u>induced</u> representation $Ind_{H}^{G}\rho$, which would be a representation of G.

Remark (Induction \neq inflation)

Do not confuse this with inflation, which consists in viewing a representation of a quotient G/N as a representation of G! $G \longrightarrow G/N \longrightarrow GL(V)$

Definition(s) of the induced representation

Let $H \leq G$.

Definition (Right transversal)

A right transversal of H in G is a subset $T \subseteq G$ such that

$$G=\coprod_{t\in T} Ht.$$

In other words, each $g \in G$ can be <u>uniquely</u> decomposed as $g = h_g t_g$ with $h_g \in H$ and $t_g \in T$.

We may and do make the assumption that $1_G \in T$. Then the decomposition of every $h \in H$ is $h = h1_G$. Actually, for all $g \in G$, $t_g = 1_G$ iff. $g \in H$.

Explicit but dirty construction of Ind

Let W be a representation of H. Idea: we will define $\operatorname{Ind}_{H}^{G} W$ as a product of copies of Windexed by T, so that if g = ht with $h \in H$, $t \in T$, then for all $w \in W$, $g \cdot w$ is $h_g \cdot w$ in the copy of W indexed by t_g .

Definition (Induced representation, first version)

$$\operatorname{Ind}_{H}^{G}W = \prod_{t \in T} W_{t} = \bigoplus_{t \in T} W_{t}$$

where $W_t = W$ for all t.

Theorem

The formula

$$g \cdot w_t \stackrel{=}{\underset{tg=ht'}{=}} h \cdot w_{t'} \quad (h \in H; t, t' \in T)$$

makes $\operatorname{Ind}_{H}^{G} W$ a representation of G.

Explicit but dirty construction of Ind

Definition (Induced representation, first version)

$$\operatorname{Ind}_{H}^{G}W = \prod_{t\in\mathcal{T}}W_{t} = \bigoplus_{t\in\mathcal{T}}W_{t}$$

where $W_t = W$ for all t.

Theorem

The formula

$$g \cdot w_t \stackrel{=}{\underset{tg=ht'}{=}} h \cdot w_{t'} \quad (h \in H; t, t' \in T)$$

makes $\operatorname{Ind}_{H}^{G} W$ a representation of G.

Proof.

Doable, but we will give a better one later.

Let W be a representation of H.

Definition (Induced representation, second version)

$$\operatorname{Ind}_{H}^{G} W = \{f : G \to W \mid f(hx) = h \cdot f(x) \text{ for all } h \in H, x \in G\}.$$

Theorem

The formula $(g \cdot f)(x) = f(xg) \quad (g, x \in G)$ makes $\operatorname{Ind}_{H}^{G} W$ a representation of G.

Clean but abstract construction of Ind

Definition (Induced representation, second version)

 $Ind_{H}^{G}W = \{f : G \to W \mid f(hx) = h \cdot f(x) \text{ for all } h \in H, x \in G\},\$ with $(g \cdot f)(x) = f(xg) \quad (g, x \in G).$

Proof.

Note that $\operatorname{Ind}_{H}^{G} W$ is a \mathbb{C} -vector space. Let $f \in Ind_{H}^{G}W$. Then for all $g, x \in G$ and $h \in H$, $(g \cdot f)(hx) = f(hxg) = h \cdot f(xg) = h \cdot ((g \cdot f)(x)),$ so $g \cdot f \in \operatorname{Ind}_{\mu}^{G} W$. Besides, this is a *G*-action: for all $f \in \operatorname{Ind}_{H}^{G} W$, clearly $1_G \cdot f = f$, and also $g_1 \cdot (g_2 \cdot f) = (g_1g_2) \cdot f$ for all $g_1, g_2 \in G$, as $(g_1 \cdot (g_2 \cdot f))(x) = (g_2 \cdot f)(xg_1) = f(xg_1g_2)$ $= ((g_1g_2) \cdot f)(x)$ for all $x \in G$. And this G-action is linear: for $g \in G$, $f_1, f_2 \in \operatorname{Ind}_H^G W$, $\lambda \in \mathbb{C}$, $g \cdot (f_1 + f_2) = g \cdot f_1 + g \cdot f_2$ and $g \cdot (\lambda f_1) = \lambda (g \cdot f_1)$.

Equivalence of these constructions

Theorem ($\operatorname{Ind}_{H}^{G} W$ well-defined up to isomorphism)

These two constructions of $\operatorname{Ind}_{H}^{G} W$ yield equivalent representations.

Proof.

$$\begin{array}{cccc} f: G \to W \mid f(hx) = h \cdot f(x) \} & \longleftrightarrow & \prod_{t \in T} W_t \\ f & \longmapsto & \left(f(t) \right)_{t \in T} \\ \left(f_{\vec{w}} : x \mapsto h_x w_{t_x} \right) & \longleftrightarrow & \vec{w} = (w_t)_{t \in T} \end{array}$$

are well-defined, \mathbb{C} -linear, and inverses of each other. \rightsquigarrow we may define a *G*-action on $\prod_{t \in T} W_t$ by $f_{g \cdot \vec{w}} = g \cdot f_{\vec{w}}$:

$$egin{aligned} (g\cdotec w)_t &= f_{g\cdotec w}(t) = (g\cdot f_{ec w})(t) = f_{ec w}(tg) \ &= \ _{tg=ht'}f_{ec w}(ht') = h\cdot f_{ec w}(t') = h\cdot w_{t'}. \end{aligned}$$

Theorem (Ind^G_H W well-defined up to isomorphism)

These two constructions of $\operatorname{Ind}_{H}^{G} W$ yield equivalent representations.

Remark

The degree of the induced representation is

$$\operatorname{deg}\operatorname{Ind}_{H}^{G}W=(\#T)\operatorname{deg}W=[G:H]\operatorname{deg}W,$$

and its restriction $\operatorname{Res}_{H}^{G} \operatorname{Ind}_{H}^{G} W$ contains a copy of the representation W.

Example: permutation representations

Let G be a group acting transitively on a set $X \neq \emptyset$, meaning that for all $x, y \in X$ there exists $g \in G$ such that $g \cdot x = y$.

Fix $x_0 \in X$, let $H = \{g \in G \mid g \cdot x_0 = x_0\}$. For each $x \in X$, pick $g_x \in G$ such that $g_x \cdot x_0 = x$; the other choices are the $g_x h$, $h \in H$. We may and do assume that $g_{x_0} = 1_G$. Then

$$\begin{array}{rcccc} G/H & \longleftrightarrow & X \\ gH & \longmapsto & g \cdot x_0 \\ g_xH & \longleftrightarrow & x, \end{array}$$

so $G = \prod_{x \in X} g_x H$: the g_x form a left transversal.

Let G be a group acting <u>transitively</u> on a set $X \neq \emptyset$, meaning that for all $x, y \in X$ there exists $g \in G$ such that $g \cdot x = y$.

Fix $x_0 \in X$, let $H = \{g \in G \mid g \cdot x_0 = x_0\}$, and for each $x \in X$, pick $t_x = g_x^{-1} \in G$ such that $t_x \cdot x = x_0$; the other choices are the ht_x , $h \in H$. We may and do assume that $t_{x_0} = 1_G$. Then

$$egin{array}{cccc} H igcarrow G & \longleftrightarrow & X \ Hg & \longmapsto & g^{-1} \cdot x_0 \ Ht_x & \longleftarrow & x, \end{array}$$

so $G = \prod_{x \in X} Ht_x$: the t_x form a right transversal.

Permutation representations as Ind 1

From the trivial representation $\mathbb{1}_H$ of H, we get

$$\operatorname{\mathsf{Ind}}_H^G \mathbbm{1}_H = \bigoplus_{x \in X} \mathbb{C}_x = \prod_{x \in X} \mathbb{C}_x$$

which is a representation of G by the rule

$$g \cdot z_x \stackrel{}{\underset{t_xg=ht_y}{=}} h \cdot z_y = z_y.$$

But $t_x g = ht_y$ means that $g = t_x^{-1}ht_y = g_xht_y$ takes y to x, so that $y = g^{-1} \cdot x$.

In conclusion, g acts on $\operatorname{Ind}_{H}^{G} \mathbb{1}_{H} = \bigoplus_{x \in X} \mathbb{C}_{x}$ by permuting the coordinates by g^{-1} , so actually

$$\mathsf{Ind}_H^G \mathbbm{1}_H = \mathbb{C}[X]$$

is the permutation representation attached to $G \circlearrowright X$.

Induced characters

Let W be a representation of H of character $\chi : H \longrightarrow \mathbb{C}$. What is the character $\operatorname{Ind}_{H}^{G} \chi : G \longrightarrow \mathbb{C}$ of $\operatorname{Ind}_{H}^{G} W$?

Definition (Extension by 0)

The extension of χ by 0 is

$$egin{array}{cccc} \chi^{0}: & {\cal G} & \longrightarrow & {\mathbb C} \ & g & \longmapsto & \left\{ egin{array}{cccc} \chi(g), & {\it if} \ g \in {\cal H} \ 0, & {\it else.} \end{array}
ight.$$

Warning

In general, this is not the character of $\operatorname{Ind}_{H}^{G} W$.

Extension by 0

Definition (Extension by 0)

The extension of χ by 0 is

$$egin{array}{rcl} \zeta^{0}: & {\cal G} & \longrightarrow & {\mathbb C} \ & g & \longmapsto & \left\{ egin{array}{ll} \chi(g), & {\it if} \ g \in {\cal H} \ 0, & {\it else.} \end{array}
ight.$$

Lemma

For all
$$g \in G$$
 and $h \in H$, $\chi^0(hgh^{-1}) = \chi^0(g)$.

Proof.

If $g \notin H$, then $g' = hgh^{-1} \notin H$ either, else $g = h^{-1}g'h \in H$; so 0 = 0, OK. Else, if $g \in H$, then $\chi^0(hgh^{-1}) = \chi(hgh^{-1}) = \chi(g) = \chi^0(g)$ as χ is a class function on H.

Extension by 0

Definition (Extension by 0)

The extension of χ by 0 is

$$\chi^0: G \longrightarrow \mathbb{C}$$

 $g \longmapsto \begin{cases} \chi(g), & \text{if } g \in H \\ 0, & \text{else.} \end{cases}$

Lemma

For all
$$\mathsf{g}\in\mathsf{G}$$
 and $\mathsf{h}\in\mathsf{H}$, $\chi^0(\mathsf{hgh}^{-1})=\chi^0(\mathsf{g}).$

Warning

In general, this does not hold for $h \in G$.

First formula for induced characters

Lemma (First formula for induced characters)

For all $g \in G$,

$$\operatorname{Ind}_{H}^{G}\chi(g) = \frac{1}{\#H}\sum_{x\in G}\chi^{0}(xgx^{-1}).$$

First formula for induced characters: proof

Let $(e_i)_{i \in I}$ be a basis of W. Then $(e_{i,t})_{\substack{i \in I \\ t \in T}}$ is a basis of $\operatorname{Ind}_H^G W = \bigoplus_{t \in T} W_t$, so for all $g \in G$,

$$\operatorname{Ind}_{H}^{G} \chi(g) = \sum_{t \in T} \sum_{i \in I} \operatorname{coef.} \text{ of } e_{i,t} \text{ in } g \cdot e_{i,t}.$$

But $g \cdot e_{i,t} = h \cdot e_{i,t'} \in W_{t'}$ where tg = ht', $h \in H$, $t' \in T$, so this coef. is 0 unless t = t', that is to say $tgt^{-1} \in H$, and in this case $g \cdot e_{i,t} = h \cdot e_{i,t}$ where $h = tgt^{-1} \in H$, so $\sum \text{coef. of } e_{i,t} \text{ in } ge_{i,t} = \sum \text{coef. of } e_{i,t} \text{ in } h \cdot e_{i,t} = \text{Tr}(h|W_t) = \chi(h).$ i∈I i∈I $\rightsquigarrow \operatorname{Ind}_{H}^{G} \chi(g) = \sum_{t \in T} \chi^{0}(tgt^{-1}) = \frac{1}{\#H} \sum_{t \in T} \sum_{h \in H} \chi^{0}(htgt^{-1}h^{-1})$ $=_{x=ht} \frac{1}{\#H} \sum_{x \in G} \chi^0(xgx^{-1}) \text{ as } G = \coprod_{x \in G} Ht.$

Reminders on group actions

Let G be a finite group acting on a finite set X. For each $x \in X$, we let

 $G \cdot x = \{g \cdot x, g \in G\} \subseteq X, \quad G_x = \{g \in G \mid g \cdot x = x\} \leq G.$

As
$$\begin{array}{ccc} G & \longrightarrow & G \cdot x \\ g & \longmapsto & g \cdot x \end{array}$$
 is $\#G_x$ -to-1, we have

$$\#G = \#G_x \times \#(G \cdot x).$$

Example

Let G act on X = G by $g \cdot x = gxg^{-1}$. Then $G \cdot x$ is the conjugacy class of X, and $G_x = C_G(x) = \{g \in G \mid gx = xg\}$ is called the centraliser of x in G.

Second formula(e) for induced characters

Let G be a group,
$$g \in G$$
, and $K \leq G$. Define
 $cc_{\mathcal{K}}(g) = \{kgk^{-1}, k \in \mathcal{K}\} \subseteq G$, $C_{\mathcal{K}}(g) = \{k \in \mathcal{K} \mid kg = gk\} \leq \mathcal{K}$
Let $H \leq G$. We have $cc_{G}(g) = \coprod_{i} cc_{H}(g_{i})$ for some $g_{i} \in G$.
If $g_{i} \in H$, then $cc_{H}(g_{i}) \subseteq H$; if $g_{i} \notin H$, then $cc_{H}(g_{i}) \cap H = \emptyset$.
 $\rightsquigarrow cc_{G}(g) \cap H = \coprod_{j} cc_{H}(h_{j})$ for some $h_{j} \in H$.

Theorem (Second formula for induced characters)

Let χ be a character on $H \leq G$. For all $g \in G$,

$$\begin{aligned} \operatorname{Ind}_{H}^{G}\chi(g) &= \#C_{G}(g)\sum_{j}\frac{\chi(h_{j})}{\#C_{H}(h_{j})} = \frac{[G:H]}{\#cc_{G}(g)}\sum_{j}\#cc_{H}(h_{j})\chi(h_{j}), \\ \end{aligned}$$
where $cc_{G}(g) \cap H = \coprod_{j} cc_{H}(h_{j}).$

Second formula(e) for induced characters

Theorem (Second formula for induced characters)

Let χ be a character on $H \leq G$. For all $g \in G$,

 $j y \in cc_H(h_i)$

$$\begin{aligned} \operatorname{Ind}_{H}^{G}\chi(g) &= \#C_{G}(g)\sum_{j}\frac{\chi(h_{j})}{\#C_{H}(h_{j})} = \frac{[G:H]}{\#cc_{G}(g)}\sum_{j}\#cc_{H}(h_{j})\chi(h_{j}), \end{aligned}$$
where $cc_{G}(g) \cap H = \coprod_{j} cc_{H}(h_{j}).$

Proof.

$$Ind_{H}^{G}\chi(g) = \frac{1}{\#H} \sum_{x \in G} \chi^{0}(xgx^{-1}) = \frac{\#C_{G}(g)}{\#H} \sum_{g' \in cc_{G}(g)} \chi^{0}(g')$$
$$= \frac{\#C_{G}(g)}{\#H} \sum_{i} \sum_{g' \in cc_{H}(h_{i})} \chi(g) = \#C_{G}(g) \sum_{i} \frac{\#cc_{H}(h_{i})}{\#H} \chi(h_{i}). \Box$$

Second formula(e) for induced characters

Theorem (Second formula for induced characters)

Let χ be a character on $H \leq G$. For all $g \in G$,

$$\begin{aligned} \operatorname{Ind}_{H}^{G}\chi(g) &= \#C_{G}(g)\sum_{j}\frac{\chi(h_{j})}{\#C_{H}(h_{j})} = \frac{[G:H]}{\#cc_{G}(g)}\sum_{j}\#cc_{H}(h_{j})\chi(h_{j}), \\ \end{aligned}$$
where $cc_{G}(g) \cap H = \coprod_{j} cc_{H}(h_{j}).$

Example

Let
$$G = S_3$$
, $\sigma = (123)$, $\sigma' = (132)$, $\tau = (12)$, $\tau' = (23)$, $\tau'' = (13)$,
 $H = \{ \mathsf{Id}, \tau \} \le G$, and $\chi \in \mathsf{Irr}(H)$: $\chi(\mathsf{Id}) = 1$, $\chi(\tau) = -1$.
• $cc_G(\tau') \cap H = \{\tau, \tau', \tau''\} \cap H = \{\tau\} = cc_H(\tau)$
 $\rightsquigarrow \mathsf{Ind}_H^G \chi(\tau') = \frac{[G:H]}{\# cc_G(\tau')} \# cc_H(\tau)\chi(\tau) = -1$.
• $cc_G(\sigma) \cap H = \{\sigma, \sigma'\} \cap H = \emptyset$
 $\rightsquigarrow \mathsf{Ind}_H^G \chi(\sigma) = 0$ as $\sum_{\emptyset} = 0$.

Frobenius reciprocity

Theorem (Frobenius reciprocity)

Let ϕ be a character on H, and ψ be a character on G. Then

$$(\operatorname{Ind}_{H}^{G}\phi \,|\,\psi)_{G} = (\phi \,|\,\operatorname{Res}_{H}^{G}\psi)_{H}.$$

Frobenius reciprocity: proof

$$(\operatorname{Ind}_{H}^{G}\phi | \psi)_{G} = \frac{1}{\#G} \sum_{g \in G} (\operatorname{Ind}_{H}^{G}\phi(g))\overline{\psi(g)}$$
$$= \frac{1}{\#G} \sum_{g \in G} \left(\frac{1}{\#H} \sum_{x \in G} \phi^{0}(xgx^{-1})\right)\overline{\psi(g)}$$
$$= \frac{1}{\#G\#H} \sum_{x \in G} \sum_{g \in G} \phi^{0}(xgx^{-1})\overline{\psi(g)}$$
$$\underset{g=x^{-1}yx}{=} \frac{1}{\#G\#H} \sum_{x \in G} \sum_{y \in G} \phi^{0}(y)\overline{\psi(x^{-1}yx)}$$
$$= \frac{1}{\#G\#H} \sum_{y \in G} \sum_{x \in G} \phi^{0}(y)\overline{\psi(y)} = \frac{1}{\#H} \sum_{y \in G} \phi^{0}(y)\overline{\psi(y)}$$
$$= \frac{1}{\#H} \sum_{y \in H} \phi(y)\overline{\psi(y)} = (\phi | \operatorname{Res}_{H}^{G}\psi)_{H}. \quad \Box$$

Frobenius reciprocity: example

Take $G = S_3$,		ld	(12)	(123)
$H = \{ Id, \tau \} \leq G$		1	3	2
where $ au = (12)$.	$\mathbb{1}_{G}$	1	1	1
	ε	1	-1	1
Recall the character table of H :	\triangleleft	2	0	-1.

For any character χ of H, we have

$$(\operatorname{Ind}_{H}^{G}\chi \mid \mathbb{1}_{G})_{G} = (\chi \mid \operatorname{Res}_{H}^{G}\mathbb{1}_{G})_{H} = \frac{\chi(\operatorname{Id}) + \chi(\tau)}{2},$$
$$(\operatorname{Ind}_{H}^{G}\chi \mid \varepsilon)_{G} = (\chi \mid \operatorname{Res}_{H}^{G}\varepsilon)_{H} = \frac{\chi(\operatorname{Id}) - \chi(\tau)}{2},$$
$$(\operatorname{Ind}_{H}^{G}\chi \mid \triangleleft)_{G} = (\chi \mid \operatorname{Res}_{H}^{G} \triangleleft)_{H} = \frac{2\chi(\operatorname{Id}) + 0\chi(\tau)}{2} = \operatorname{deg}\chi.$$

 $H \simeq \mathbb{Z}/2\mathbb{Z} \rightsquigarrow \operatorname{Irr}(H) = \{\mathbb{1}_H, \psi\}, \ \psi(\operatorname{Id}) = 1, \ \psi(\sigma) = -1.$ We find that $\operatorname{Ind}_H^G \mathbb{1}_H = \mathbb{1}_G + \triangleleft \text{ and that } \operatorname{Ind}_H^G \psi = \varepsilon + \triangleleft.$

Corollary (Get all reps of G from ind reps from any H)

Let G be a finite group, and let $\chi \in Irr(G)$. For all $H \leq G$, there exists $\psi \in Irr(H)$ such that $Ind_{H}^{G}\psi$ contains χ as an irreducible component.

Proof.

Let ψ be an irreducible component of $\operatorname{Res}_{H}^{G} \chi$. Then $(\operatorname{Ind}_{H}^{G} \psi | \chi)_{G} = (\psi | \operatorname{Res}_{H}^{G} \chi)_{H} \ge 1.$

All reps from induced reps

Example

Take $G = S_4 \ge H = S_3$. Recall the character tables:

C		(10)	(100)	S_4	ld	(12)	(123)	(1234)	(12)(34)
S_3	ld	(12)	(123)	# class	1	6	8	6	3
# class	1	3	2	1 S4	1	1	1	1	1
$\mathbb{1}_{S_3}$	1	1	1	ε_{S_4}	1	$^{-1}$	1	-1	1
ε_{S_3}	1	-1	1	ψ	2	0	$^{-1}$	0	2
_,	2	0	-1	χ	3	1	0	-1	$^{-1}$
	- 1	Ũ	-	$\chi \varepsilon_{S_4}$	3	$^{-1}$	0	1	-1

•
$$\operatorname{Ind}_{S_3}^{S_4} \mathbb{1}_{S_3} = \mathbb{1}_{S_4} + \chi$$
,
• $\operatorname{Ind}_{S_4}^{S_4} \mathbb{1}_{S_5} = \mathbb{1}_{S_4} + \chi$,

•
$$\operatorname{Ind}_{S_3} \varepsilon_{S_3} = \varepsilon_{S_4} + \chi \varepsilon_{S_4},$$

•
$$\operatorname{Ind}_{S_3}^{S_4} \triangleleft = \psi + \chi + \chi \varepsilon_{S_4}.$$