MAU34104 Group representations 3 - Character theory

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: March 3, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Schur's lemma

Theorem (Schur's lemma)

Let R be a ring, and let M_1 , M_2 be <u>simple</u> R-modules. Then any module morphism from M_1 to M_2 is either 0 or an isomorphism.

Proof.

Let $f: M_1 \longrightarrow M_2$ be a morphism. Then Ker $f \subseteq M_1$ is a submodule, so it is either $\{0\}$ or M_1 . If Ker $f = M_1$, then f = 0. Else, Ker $f = \{0\}$, so f is injective, so Im $f \subseteq M_2$ is a nonzero submodule. Thus Im $f = M_2$, so f is also surjective.

Theorem (Schur's lemma)

Let R be a ring, and let M_1 , M_2 be <u>simple</u> R-modules. Then any module morphism from M_1 to M_2 is either 0 or an isomorphism.

Corollary (Non-examinable)

If M is simple, then End(M) is a division ring.

Corollary (Schur's lemma for representations over \mathbb{C})

Let G be a group, and let V, W be irreducible representations of G over $K = \mathbb{C}$. Then

$$\mathsf{Hom}_{\mathcal{G}}(V,W) = \begin{cases} \{0\} & \text{if } V \not\simeq W, \\ \{\lambda \, \mathsf{Id}, \, \lambda \in \mathbb{C}\} & \text{if } V = W. \end{cases}$$

Proof.

Let $f \in \operatorname{End}_G(V)$. Since \mathbb{C} is algebraically closed, f has at least one eigenvalue λ . As $\operatorname{Id} \in \operatorname{End}_G(V)$, we also have $f - \lambda \operatorname{Id} \in \operatorname{End}_G(V)$. Since $f - \lambda \operatorname{Id}$ is not injective, it must be 0.

Corollary (Schur's lemma for representations over \mathbb{C})

Let G be a group, and let V, W be irreducible representations of G over $K = \mathbb{C}$. Then

$$\mathsf{Hom}_{\mathcal{G}}(V,W) = \left\{ egin{array}{cc} \{0\} & \textit{if } V
ot \cong W, \ \{\lambda \, \mathsf{Id}, \, \lambda \in \mathbb{C}\} & \textit{if } V = W. \end{array}
ight.$$

Proof.

Let $f \in \operatorname{End}_G(V)$. Since \mathbb{C} is algebraically closed, f has at least one eigenvalue λ . As $\operatorname{Id} \in \operatorname{End}_G(V)$, we also have $f - \lambda \operatorname{Id} \in \operatorname{End}_G(V)$.

Since $f - \lambda$ ld is not injective, it must be 0.

From now on, we will only consider representations of finite groups G over $K = \mathbb{C}$ of finite degree. In particular, Maschke applies.

Reminders on dot products

Dot products over $\mathbb R$

Definition

Let V be an \mathbb{R} -vector space. A <u>dot product</u> over V is a map $V \times V \longrightarrow \mathbb{R}$ $(v, w) \longmapsto (v|w)$ which is bilinear: for all $\lambda \in \mathbb{R}$, $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$, $(v_1 + v_2|w) = (v_1|w) + (v_2|w)$, $(\lambda v|w) = \lambda(v|w)$, $(v|w_1 + w_2) = (v|w_1) + (v|w_2)$, $(v|\lambda w) = \lambda(v|w)$, symmetric: (v|w) = (w|v), and such that $(v|v) \ge 0$, with equality only when v = 0.

Example

- On $V = \mathbb{R}^n$, usual dot product $(v|w) = \sum_{k=1}^n v_k w_k$.
- On $V = \mathbb{R}[x]$, we can define the dot product $(P|Q) = \int_0^1 P(x)Q(x)dx.$

Dot products over $\mathbb C$

Definition

Let V be an \mathbb{C} -vector space. A <u>dot product</u> over V is a map $V \times V \longrightarrow \mathbb{C}$ $(v, w) \longmapsto (v|w)$ which is sesquilinear: for $\lambda \in \mathbb{C}$, $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$,

$$(v_1 + v_2|w) = (v_1|w) + (v_2|w), \quad (\lambda v|w) = \lambda(v|w), \ (v|w_1 + w_2) = (v|w_1) + (v|w_2), \quad (v|\lambda w) = \overline{\lambda}(v|w),$$

conjugate-symmetric: (v|w) = (w|v), and such that $(v|v) \in \mathbb{R}_{\geq 0}$, with equality only when v = 0.

Example

- On $V = \mathbb{C}^n$, usual dot product $(v|w) = \sum_{k=1}^n v_k \overline{w_k}$.
- On $V = \mathbb{C}[x]$, we can define the dot product

$$(P|Q) = \int_0^1 P(x)\overline{Q(x)}dx.$$

Orthonormality

Definition (Orthogonal, orthonormal)

Let V be a vector space with a dot product over \mathbb{R} or \mathbb{C} , and let $(v_j)_{j\in J}$ be a family of elements of V.

- The v_j are <u>orthogonal</u> if $(v_j | v_k) = 0$ for all $j \neq k$.
- They are <u>orthonormal</u> if furthemore $(v_j|v_j) = 1$ for all j.

Proposition

If $(e_j)_{j \in J}$ if a basis of V which is orthonormal, then the coordinates of any vector $v \in V$ may be recovered as $(v|e_i)$.

Proof.

If
$$v = \sum_{j \in J} \lambda_j e_j$$
, then
 $(v|e_k) = \left(\sum_{j \in J} \lambda_j e_j \middle| e_k\right) = \sum_{j \in J} \lambda_j (e_j|e_k) = \lambda_k.$

The character of a representation

Conjugagy and class functions

Let G be a group.

Definition (Conjugacy)

Two elements $g, g' \in G$ are <u>conjugate</u> if $g' = hgh^{-1}$ for some $h \in G$.

The <u>conjugacy class</u> of $g \in G$ is the set of its conjugates.

Definition (Class function)

A class function is a function
$$\psi : G \longrightarrow \mathbb{C}$$
 such that
 $\psi(hgh^{-1}) = \psi(g)$
for all $g, h \in G$.

Class functions form a \mathbb{C} -vector space, whose dimension is the number of conjugacy classes in G, and which we equip with the dot product $(\phi | \psi) = \frac{1}{\#G} \sum_{g \in G} \phi(g) \overline{\psi(g)}$.

Definition (Trace)

The <u>trace</u> of a square matrix is the sum of its diagonal elements.

Example

$$\mathsf{Tr} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 + 4 = 5.$$

Definition (Trace)

The <u>trace</u> of a square matrix is the sum of its diagonal elements.

Proposition

Tr is linear:
$$Tr(A + B) = Tr(A) + Tr(B)$$
, $Tr(\lambda A) = \lambda Tr(A)$.
Furthermore $Tr(AB) = Tr(BA)$, whence $Tr(BAB^{-1}) = Tr(A)$.

Corollary

We can define the trace of a linear map $T: V \longrightarrow V$.

We record:

$${\sf Tr} \ T = \sum_i {\sf coeff.} {\sf of} \ e_i {\sf in} \ T(e_i)$$
 for any basis $(e_1, \cdots, e_d) {\sf of} \ V.$

The character of a representation $\rho : G \longrightarrow GL(V)$ is $G \longrightarrow \mathbb{C}$ $g \longmapsto \operatorname{Tr} \rho(g).$

The character of a representation
$$\rho : G \longrightarrow GL(V)$$
 is
 $G \longrightarrow \mathbb{C}$
 $g \longmapsto \operatorname{Tr} \rho(g).$

Proposition

The character of a representation is a class function.

Proof.

$$\operatorname{Tr} \rho(hgh^{-1}) = \operatorname{Tr} \left(\rho(h)\rho(g)\rho(h)^{-1}\right) = \operatorname{Tr} \rho(g).$$

The character of a representation
$$\rho : G \longrightarrow GL(V)$$
 is
 $\begin{array}{c} G \longrightarrow \mathbb{C} \\ g \longmapsto & \operatorname{Tr} \rho(g). \end{array}$

Proposition

If two representations are equivalent, then they have the same character.

Proof.

$$\operatorname{Tr}\left(P^{-1}\rho(g)P\right) = \operatorname{Tr}\rho(g).$$

The character of a representation $\rho : G \longrightarrow GL(V)$ is $G \longrightarrow \mathbb{C}$ $g \longmapsto \operatorname{Tr} \rho(g).$

Proposition

The character of the trivial representation $\mathbb{1}$ is the constant function 1 from G to \mathbb{C} .

We still denote it by 1.

The character of a representation $\rho : G \longrightarrow GL(V)$ is $G \longrightarrow \mathbb{C}$ $g \longmapsto \operatorname{Tr} \rho(g).$

Proposition

If χ is the character of a representation of a group G of degree n, then $\chi(1_G) = n$.

Notation: deg $\chi = \chi(1_G)$.

The character of a representation

Definition (Character)

The character of a representation
$$\rho : G \longrightarrow GL(V)$$
 is
 $G \longrightarrow \mathbb{C}$
 $g \longmapsto \operatorname{Tr} \rho(g).$

Proposition

Let G be a group, V_1 , V_2 representations of G, and χ_1, χ_2 their characters. The the character of $V_1 \oplus V_2$ is $\chi_1 + \chi_2$.

Proof.

Let $\rho_1 : G \longrightarrow GL(V_1)$, $\rho_2 : G \longrightarrow GL(V_2)$. Then the representation $V_1 \oplus V_2$ is defined by

$$g\mapsto egin{pmatrix}
ho_1(g) & 0 \ 0 &
ho_2(g) \end{pmatrix}$$

Theorem (Reminder)

Let A be a square matrix with coefficients in a field K. If $P(x) \in K[x]$ satisfies P(A) = 0, has all its roots in K, and no repeated root, then A is diagonalisable, and all its eigenvalues are roots of P(x).

Lemma

Let ρ be a representation of a finite group G of order n = #G. Then for all $g \in G$, $\rho(g)$ is diagonalisable, and its eigenvalues are of the form $e^{2k\pi i/n}$, $k \in \mathbb{Z}$.

Proof.

Let
$$g \in G$$
. By Lagrange, $g^n = 1_G$, so $\rho(g)^n = Id$.
Take $P(x) = x^n - 1 = \prod_{k=0}^n (x - e^{2k\pi i/n}) \in \mathbb{C}[x]$.

Lemma

Let ρ be a representation of a finite group G of order n = #G. Then for all $g \in G$, $\rho(g)$ is diagonalisable, and its eigenvalues are of the form $e^{2k\pi i/n}$, $k \in \mathbb{Z}$.

Corollary

Let
$$\chi$$
 be the character of ρ . Then for all $g \in G$,
 $g \in \text{Ker } \rho \iff \chi(g) = \deg \rho$.

Corollary

Let χ be the character of a representation ρ of G. Then for all $g \in G$, $\chi(g^{-1}) = \overline{\chi(g)}$.

Proof.

For a given
$$g \in G$$
, pick a basis of V such that

$$\rho(g) = \begin{pmatrix} \ddots & \lambda_j & 0 \\ 0 & \ddots \end{pmatrix}, \quad \lambda_j = e^{2k_j i\pi/n}.$$
Then $\rho(g^{-1}) = \rho(g)^{-1} = \begin{pmatrix} \ddots & \lambda_j^{-1} & 0 \\ 0 & \ddots \end{pmatrix} = \begin{pmatrix} \ddots & \overline{\lambda_j} & 0 \\ 0 & \ddots \end{pmatrix}.$

The character of Hom

Given a representation V of G, we define

$$\mathcal{V}^{\mathsf{G}} = \{ \mathsf{v} \in \mathsf{V} \mid g\mathsf{v} = \mathsf{v} \text{ for all } g \in \mathsf{G} \} = \bigcap_{g \in \mathsf{G}} \operatorname{Ker} \left(\rho(g) - \operatorname{Id} \right).$$

This is a subrepresentation of V; in fact, it is the largest one which is a direct sum of copies of 1.

Example

Recall that if V and W are representations of G, then so is Hom(V, W) by

$$(gT)(v) = g(T(g^{-1}v)).$$

Then $\operatorname{Hom}(V, W)^{G} = \operatorname{Hom}_{G}(V, W)$.

The dimension of invariants

Lemma

Let
$$\rho : G \longrightarrow GL(V)$$
 be a representation.
Then $\pi = \frac{1}{\#G} \sum_{g \in G} \rho(g) \in End(V)$ is a projection onto V^G .

Proof.

For all
$$v \in V$$
 and $h \in G$, we have

$$\rho(h)(\pi(v)) = \rho(h) \left(\frac{1}{\#G} \sum_{g \in G} \rho(g)(v)\right) = \frac{1}{\#G} \sum_{g \in G} \rho(h)(\rho(g)(v))$$

$$= \frac{1}{\#G} \sum_{g \in G} \rho(hg)(v) = \frac{1}{\#G} \sum_{g \in G} \rho(g)(v) = \pi(v).$$
We conclude that $\pi^2 = \pi$ is a projection onto $\operatorname{Im} \pi = V^G$.

The dimension of invariants

Lemma

Let
$$\rho : G \longrightarrow GL(V)$$
 be a representation.
Then $\pi = \frac{1}{\#G} \sum_{g \in G} \rho(g) \in End(V)$ is a projection onto V^G .

Corollary

dim
$$V^G = rac{1}{\#G} \sum_{g \in G} \chi(g).$$

Proof.

The matrix of π with respect to a suitable basis is $\begin{pmatrix} I_n & 0 \\ 0 & 0 \end{pmatrix}$, whence dim $V^G = n = \operatorname{Tr} \pi = \frac{1}{\#G} \sum_{g \in G} \operatorname{Tr} \rho(g)$.

Let G be a group. Recall that if V_1 and V_2 are representations of G, then so is Hom (V_1, V_2) by

$$(gT)(v) = g(T(g^{-1}v)).$$

Lemma

The character of Hom(V_1 , V_2) is $\overline{\chi_1} \chi_2$, where χ_1 is the character of V_1 and χ_2 that of V_2 .

The character of Hom

Proof.

Fix bases $\mathcal{B}_1 = (b_1, \cdots)$ of V_1 and $\mathcal{C} = (c_1, \cdots)$ of V_2 . Then the $T_{i,j}$, defined by $T_{i,j}(b_j) = c_i$, $T_{i,j}(b_k) = 0$ for $k \neq j$, form a basis of Hom (V_1, V_2) . Pick $g \in G$; we have $gT_{i,j} = \rho_2(g)T_{i,j}\rho_1(g)^{-1}$. Let Q be the matrix of $\rho_1(g)^{-1}$ on \mathcal{B} , and R that of $\rho_2(g)$ on \mathcal{C} .

$$b_n \stackrel{\rho_1(g)^{-1}}{\longmapsto} \sum_k Q_{k,n} b_k \stackrel{\mathcal{T}_{i,j}}{\longmapsto} Q_{j,n} c_i \stackrel{\rho_2(g)}{\longmapsto} Q_{j,n} \sum_m R_{m,i} c_m$$

so $gT_{i,j} = \sum_{m,n} Q_{j,n}R_{m,i}T_{m,n}$. Thus the trace of g on $Hom(V_1, V_2)$ is

$$\sum_{i,j} \text{ coeff. of } T_{i,j} \text{ in } gT_{i,j} = \sum_{i,j} Q_{j,j}R_{i,i} = \left(\sum_{i} R_{i,i}\right) \left(\sum_{j} Q_{j,j}\right)$$

$$= (\operatorname{Tr} \rho_2(g)) (\operatorname{Tr} \rho_1(g^{-1})) = \chi_2(g) \overline{\chi_1(g)}.$$

Lemma

The character of Hom(V_1 , V_2) is $\overline{\chi_1} \chi_2$, where χ_1 is the character of V_1 and χ_2 that of V_2 .

Corollary

If V is a representation of character χ , then the character of its linear dual V^{\vee} is $\overline{\chi}$.

Proof.

$$V^{\vee} = \operatorname{Hom}(V, \mathbb{1}).$$

The character of Hom

Lemma

The character of Hom(V_1 , V_2) is $\overline{\chi_1} \chi_2$, where χ_1 is the character of V_1 and χ_2 that of V_2 .

Corollary

Let V_1, V_2 be a representations of G with respective characters χ_1, χ_2 . Then $(\chi_1|\chi_2) = \dim \operatorname{Hom}_G(V_1, V_2) \in \mathbb{Z}_{\geq 0}$.

Proof.

Let $\chi = \overline{\chi_1} \chi_2$ be the character of Hom (V_1, V_2) . Then $(\chi_1 | \chi_2) = \frac{1}{\#G} \sum_{g \in G} \chi_1(g) \overline{\chi_2(g)} = \overline{\frac{1}{\#G} \sum_{g \in G} \chi(g)}$ $= \overline{\dim \operatorname{Hom}(V_1, V_2)^G} = \dim \operatorname{Hom}_G(V_1, V_2).$

Characters know everything

Let G be a finite group, and let Irr(G) be the set of characters of isomorphism classes of irreducible representations of G.

Theorem

The set Irr(G) is orthonormal.

Proof.

Let $\chi_1, \chi_2 \in Irr(G)$, and let V_1 , V_2 be the corresponding representations. Then by Schur's lemma,

$$(\chi_1|\chi_2) = \dim \operatorname{Hom}_{\mathcal{G}}(V_1, V_2) = \begin{cases} 0 & \text{if } V_1 \not\simeq V_2, \\ 1 & \text{if } V_1 = V_2. \end{cases}$$

Theorem

Let V be a representation of G of character χ . Suppose that the decomposition of V into irreducible representations is $W_1^{\oplus n_1} \oplus \cdots \oplus W_r^{\oplus n_r}$. Then $\chi = \sum_{j=1}^r n_j \chi_j$, where χ_j is the character of W_j ; thus $n_j = (\chi \mid \chi_j)$ and $(\chi \mid \chi) = \sum_{j=1}^r n_j^2$.

Proof.

We have $\chi = \sum_{j=1}^{r} n_j \chi_j$ by additivity of characters on direct sums; the rest follows from orthonormality.

Theorem

Let V be a representation of G of character χ . Suppose that the decomposition of V into irreducible representations is $W_1^{\oplus n_1} \oplus \cdots \oplus W_r^{\oplus n_r}$. Then $\chi = \sum_{j=1}^r n_j \chi_j$, where χ_j is the character of W_j ; thus $n_j = (\chi \mid \chi_j)$ and $(\chi \mid \chi) = \sum_{j=1}^r n_j^2$.

Corollary

V is irreducible iff. $(\chi | \chi) = 1$.

Theorem

Let V be a representation of G of character χ . Suppose that the decomposition of V into irreducible representations is $W_1^{\oplus n_1} \oplus \cdots \oplus W_r^{\oplus n_r}$. Then $\chi = \sum_{j=1}^r n_j \chi_j$, where χ_j is the character of W_j ; thus $n_j = (\chi \mid \chi_j)$ and $(\chi \mid \chi) = \sum_{j=1}^r n_j^2$.

Corollary

For a given V, the integers n_k are unique.

Corollary

Two representations of G are equivalent iff. they have the same character.

Theorem

Let V be a representation of G of character χ . Suppose that the decomposition of V into irreducible representations is $W_1^{\oplus n_1} \oplus \cdots \oplus W_r^{\oplus n_r}$. Then $\chi = \sum_{j=1}^r n_j \chi_j$, where χ_j is the character of W_j ; thus $n_j = (\chi \mid \chi_j)$ and $(\chi \mid \chi) = \sum_{j=1}^r n_j^2$.

Corollary

$$\# \operatorname{Irr}(G) \leq \# \operatorname{Conj.} \operatorname{classes} \operatorname{in} G.$$

NB we will prove later that this is actually an equality.

Example: S_3

Take $G = S_3$, order #G = 6.

We already know some representations of G:

Conj. classes	$\{1_G\}$	{(12), (13), (23)}	{(123), (132)}
1	1	1	1
arepsilon	1	-1	1
\triangleleft	2	0	-1
Perm	3	1	0

We compute $(1|1) = (\varepsilon|\varepsilon) = (\triangleleft|\triangleleft) = 1$, so they are irreducible.

However, since (Perm|Perm) = 2, Perm is <u>not</u> irreducible, but rather the direct sum of two irreducible representations. Which ones?

We compute $(\operatorname{Perm}|\mathbb{1}) = 1$, $(\operatorname{Perm}|\varepsilon) = 0$, and $(\operatorname{Perm}|\triangleleft) = 1$, so we get that $\operatorname{Perm} \simeq \mathbb{1} \oplus \triangleleft$.

Isotypic components

Morphisms from class functions

Lemma

Let
$$\rho : G \longrightarrow GL(V)$$
 be a representation, and let $f : G \longrightarrow \mathbb{C}$ be a class function. Then $T_f = \sum_{g \in G} f(g)\rho(g) \in End_G(V)$.

Proof.

For all
$$h \in G$$
, we have $\rho(h) T_f = \rho(h) \sum_{g \in G} f(g)\rho(g)$

$$= \sum_{g \in G} f(g)\rho(h)\rho(g) = \sum_{g \in G} f(g)\rho(hg) = \sum_{g \in G} f(g)\rho(hgh^{-1})\rho(h)$$
but the conjugation $\begin{array}{c} G \longrightarrow G \\ g \longmapsto g' = hgh^{-1} \end{array}$ is bijective, so

$$= \sum_{\substack{g'=hgh^{-1} \\ g=h^{-1}g'h}} f(h^{-1}g'h)\rho(g')\rho(h) = T_f\rho(h).$$

Lemma

Let $\rho : G \longrightarrow GL(V)$ be a representation, and let $f : G \longrightarrow \mathbb{C}$ be a <u>class function</u>. Then $T_f = \sum_{g \in G} f(g)\rho(g) \in End_G(V)$.

Corollary

If V is irreducible, then
$$T_f = \frac{\#G}{\deg V}(\chi \,|\, \overline{f}) \,\mathrm{Id}_V.$$

Proof.

By Schur, we have $T_f = \lambda \operatorname{Id}_V$ for some $\lambda \in \mathbb{C}$. Take traces. \Box

Isotypical components

Theorem (Formula for projection on isotypical component)

Let $V = \bigoplus_{\chi \in \operatorname{Irr} G} W_{\chi}^{\oplus n_{\chi}}$ be the complete decomposition of a representation of G. Then for each χ , the projection on $W_{\chi}^{\oplus n_{\chi}}$ is given by $\pi_{\chi} = \frac{\deg \chi}{\#G} \sum_{g \in G} \overline{\chi(g)} e_g \in \mathbb{C}[G].$

Proof.

Let
$$T = \frac{\deg \chi}{\#G} \sum_{g \in G} \overline{\chi(g)} e_g = \frac{\deg \chi}{\#G} T_{\overline{\chi}}.$$

Then for all $\psi \in Irr(G)$, T acts on W_{ψ} by $\lambda \operatorname{Id}$, where

$$\lambda = \frac{\deg \chi}{\#G} \frac{\#G}{\deg \psi} (\psi \,|\, \overline{\overline{\chi}}) = \begin{cases} 1 \text{ if } \psi = \chi, \\ 0 \text{ if } \psi \neq \chi. \end{cases}$$

Theorem (Formula for projection on isotypical component)

Let $V = \bigoplus_{\chi \in \operatorname{Irr} G} W_{\chi}^{\oplus n_{\chi}}$ be the complete decomposition of a representation of G. Then for each χ , the projection on $W_{\chi}^{\oplus n_{\chi}}$ is given by $\pi_{\chi} = \frac{\deg \chi}{\#G} \sum_{g \in G} \overline{\chi(g)} e_g \in \mathbb{C}[G].$

Corollary (Isotypical components)

For each χ , the subset $W_{\chi}^{\oplus n_{\chi}}$ does not depend of the chosen decomposition of V. It is called the χ -isotypical component.

Example: symmetries

Let $G = C_2 = \{1, g\}$ with $g^2 = 1$. A representation ρ of G is determined by $S = \rho(g)$ since $\rho(1) = Id$. Besides $S^2 = Id$, so S is diagonalisable with eigenvalues ± 1 , so S is a symmetry.

The irreducible representations of *G* are those of degree 1, namely 1 and $\varepsilon : G \xrightarrow{\sim} {\pm 1}$.

Given a symmetry $S \in End(V)$, the isotypical components are

$$V_{\mathbb{I}} = {\sf Ker}(S-{\sf Id}) = V_+$$
 and $V_{arepsilon} = {\sf Ker}(S+{\sf Id}) = V_-.$

The decomposition $V = V_+ \oplus V_-$ is canonical; the decompositions $V_+ = \mathbb{1}^{\oplus \dim V_+}$, $V_- = \varepsilon^{\oplus \dim V_-}$ are not.

The projectors are $\pi_1 = \frac{1}{2}(1+S)$, $\pi_{\varepsilon} = \frac{1}{2}(1-S)$.