
MAU34104

Group representations

3 - Character theory

Nicolas Mascot
mascotn@tcd.ie

Module web page

Hilary 2020–2021
Version: March 3, 2021

Nicolas Mascot Group representations

mailto:mascotn@tcd.ie
https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU34104/index.html


Schur’s lemma

Nicolas Mascot Group representations



Schur’s lemma

Theorem (Schur’s lemma)

Let R be a ring, and let M1, M2 be simple R-modules. Then
any module morphism from M1 to M2 is either 0 or an
isomorphism.

Proof.

Let f : M1 −→ M2 be a morphism. Then Ker f ⊆ M1 is a
submodule, so it is either {0} or M1.
If Ker f = M1, then f = 0.
Else, Ker f = {0}, so f is injective, so Im f ⊆ M2 is a nonzero
submodule. Thus Im f = M2, so f is also surjective.

From now on, we will only consider representations of finite
groups G over K = C of finite degree. In particular, Maschke
applies.
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Schur’s lemma

Theorem (Schur’s lemma)

Let R be a ring, and let M1, M2 be simple R-modules. Then
any module morphism from M1 to M2 is either 0 or an
isomorphism.

Corollary (Non-examinable)

If M is simple, then End(M) is a division ring.

From now on, we will only consider representations of finite
groups G over K = C of finite degree. In particular, Maschke
applies.
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Schur’s lemma

Corollary (Schur’s lemma for representations over C)

Let G be a group, and let V ,W be irreducible representations
of G over K = C. Then

HomG (V ,W ) =

{
{0} if V 6' W ,

{λ Id, λ ∈ C} if V = W .

Proof.

Let f ∈ EndG (V ). Since C is algrebraically closed, f has at
least one eigenvalue λ.
As Id ∈ EndG (V ), we also have f − λ Id ∈ EndG (V ).
Since f − λ Id is not injective, it must be 0.

From now on, we will only consider representations of finite
groups G over K = C of finite degree. In particular, Maschke
applies.
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Schur’s lemma

Corollary (Schur’s lemma for representations over C)

Let G be a group, and let V ,W be irreducible representations
of G over K = C. Then

HomG (V ,W ) =

{
{0} if V 6' W ,

{λ Id, λ ∈ C} if V = W .

Proof.

Let f ∈ EndG (V ). Since C is algrebraically closed, f has at
least one eigenvalue λ.
As Id ∈ EndG (V ), we also have f − λ Id ∈ EndG (V ).
Since f − λ Id is not injective, it must be 0.

From now on, we will only consider representations of finite
groups G over K = C of finite degree. In particular, Maschke
applies.
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Reminders on dot products
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Dot products over R
Definition

Let V be an R-vector space. A dot product over V is a map
V × V −→ R
(v ,w) 7−→ (v |w)

which is bilinear: for all λ ∈ R, v , v1, v2 ∈ V , w ,w1,w2 ∈ W,
(v1 + v2|w) = (v1|w) + (v2|w), (λv |w) = λ(v |w),
(v |w1 + w2) = (v |w1) + (v |w2), (v |λw) = λ(v |w),

symmetric: (v |w) = (w |v),
and such that (v |v) > 0, with equality only when v = 0.

Example

On V = Rn, usual dot product (v |w) =
∑n

k=1 vkwk .

On V = R[x ], we can define the dot product

(P |Q) =

∫ 1

0

P(x)Q(x)dx .
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Dot products over C
Definition

Let V be an C-vector space. A dot product over V is a map
V × V −→ C
(v ,w) 7−→ (v |w)

which is sesquilinear: for λ ∈ C, v , v1, v2 ∈ V , w ,w1,w2 ∈ W,
(v1 + v2|w) = (v1|w) + (v2|w), (λv |w) = λ(v |w),
(v |w1 + w2) = (v |w1) + (v |w2), (v |λw) = λ(v |w),

conjugate-symmetric: (v |w) = (w |v),
and such that (v |v) ∈ R>0, with equality only when v = 0.

Example

On V = Cn, usual dot product (v |w) =
∑n

k=1 vkwk .

On V = C[x ], we can define the dot product

(P |Q) =

∫ 1

0

P(x)Q(x)dx .
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Orthonormality

Definition (Orthogonal, orthonormal)

Let V be a vector space with a dot product over R or C, and
let (vj)j∈J be a family of elements of V .

The vj are orthogonal if (vj |vk) = 0 for all j 6= k.

They are orthonormal if furthemore (vj |vj) = 1 for all j .

Proposition

If (ej)j∈J if a basis of V which is orthonormal, then the
coordinates of any vector v ∈ V may be recovered as (v |ej).

Proof.

If v =
∑

j∈J λjej , then

(v |ek) =
(∑

j∈J

λjej

∣∣∣ ek) =
∑
j∈J

λj (ej |ek) = λk .
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The character of

a representation
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Conjugagy and class functions

Let G be a group.

Definition (Conjugacy)

Two elements g , g ′ ∈ G are conjugate if g ′ = hgh−1 for some
h ∈ G.
The conjugacy class of g ∈ G is the set of its conjugates.

Definition (Class function)

A class function is a function ψ : G −→ C such that
ψ(hgh−1) = ψ(g)

for all g , h ∈ G.

Class functions form a C-vector space, whose dimension is the
number of conjugacy classes in G , and which we equip with

the dot product (φ |ψ) =
1

#G

∑
g∈G

φ(g)ψ(g).
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Reminder: traces

Definition (Trace)

The trace of a square matrix is the sum of its diagonal
elements.

Example

Tr

(
1 2
3 4

)
= 1 + 4 = 5.
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Reminder: traces

Definition (Trace)

The trace of a square matrix is the sum of its diagonal
elements.

Proposition

Tr is linear: Tr(A + B) = Tr(A) + Tr(B), Tr(λA) = λTr(A).
Furthermore Tr(AB) = Tr(BA), whence Tr(BAB−1) = Tr(A).

Corollary

We can define the trace of a linear map T : V −→ V .

We record:

TrT =
∑
i

coeff. of ei in T (ei)

for any basis (e1, · · · , ed) of V .
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The character of a representation

Definition (Character)

The character of a representation ρ : G −→ GL(V ) is
G −→ C
g 7−→ Tr ρ(g).
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The character of a representation

Definition (Character)

The character of a representation ρ : G −→ GL(V ) is
G −→ C
g 7−→ Tr ρ(g).

Proposition

The character of a representation is a class function.

Proof.

Tr ρ(hgh−1) = Tr
(
ρ(h)ρ(g)ρ(h)−1

)
= Tr ρ(g).
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The character of a representation

Definition (Character)

The character of a representation ρ : G −→ GL(V ) is
G −→ C
g 7−→ Tr ρ(g).

Proposition

If two representations are equivalent, then they have the same
character.

Proof.

Tr
(
P−1ρ(g)P

)
= Tr ρ(g).
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The character of a representation

Definition (Character)

The character of a representation ρ : G −→ GL(V ) is
G −→ C
g 7−→ Tr ρ(g).

Proposition

The character of the trivial representation 1 is the constant
function 1 from G to C.

We still denote it by 1.
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The character of a representation

Definition (Character)

The character of a representation ρ : G −→ GL(V ) is
G −→ C
g 7−→ Tr ρ(g).

Proposition

If χ is the character of a representation of a group G of
degree n, then χ(1G ) = n.

Notation: degχ = χ(1G ).
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The character of a representation

Definition (Character)

The character of a representation ρ : G −→ GL(V ) is
G −→ C
g 7−→ Tr ρ(g).

Proposition

Let G be a group, V1,V2 representations of G , and χ1, χ2

their characters. The the character of V1 ⊕ V2 is χ1 + χ2.

Proof.

Let ρ1 : G −→ GL(V1), ρ2 : G −→ GL(V2). Then the
representation V1 ⊕ V2 is defined by

g 7→
(
ρ1(g) 0

0 ρ2(g)

)
.
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Characters on inverses; kernels

Theorem (Reminder)

Let A be a square matrix with coefficients in a field K.
If P(x) ∈ K [x ] satisfies P(A) = 0, has all its roots in K, and
no repeated root, then A is diagonalisable, and all its
eigenvalues are roots of P(x).

Lemma

Let ρ be a representation of a finite group G of order
n = #G. Then for all g ∈ G, ρ(g) is diagonalisable, and its
eigenvalues are of the form e2kπi/n, k ∈ Z.

Proof.

Let g ∈ G . By Lagrange, gn = 1G , so ρ(g)n = Id.
Take P(x) = xn − 1 =

∏n
k=0(x − e2kπi/n) ∈ C[x ].
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Characters on inverses; kernels

Lemma

Let ρ be a representation of a finite group G of order
n = #G. Then for all g ∈ G, ρ(g) is diagonalisable, and its
eigenvalues are of the form e2kπi/n, k ∈ Z.

Corollary

Let χ be the character of ρ. Then for all g ∈ G,
g ∈ Ker ρ⇐⇒ χ(g) = deg ρ.
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Characters on inverses; kernels

Corollary

Let χ be the character of a representation ρ of G .
Then for all g ∈ G, χ(g−1) = χ(g).

Proof.

For a given g ∈ G , pick a basis of V such that

ρ(g) =

 ... 0
λj

0
...

 , λj = e2kj iπ/n.

Then ρ(g−1) = ρ(g)−1 =

 ... 0
λ−1
j

0
...

 =

 ... 0
λj

0
...

.
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The character of Hom
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Invariants

Given a representation V of G , we define

V G = {v ∈ V | gv = v for all g ∈ G} =
⋂
g∈G

Ker
(
ρ(g)− Id

)
.

This is a subrepresentation of V ; in fact, it is the largest one
which is a direct sum of copies of 1.

Example

Recall that if V and W are representations of G , then so is
Hom(V ,W ) by

(gT )(v) = g
(
T (g−1v)

)
.

Then Hom(V ,W )G = HomG (V ,W ).
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The dimension of invariants

Lemma

Let ρ : G −→ GL(V ) be a representation.

Then π =
1

#G

∑
g∈G

ρ(g) ∈ End(V ) is a projection onto V G .

Proof.

For all v ∈ V and h ∈ G , we have

ρ(h)(π(v)) = ρ(h)

(
1

#G

∑
g∈G

ρ(g)(v)

)
=

1

#G

∑
g∈G

ρ(h)
(
ρ(g)(v)

)
=

1

#G

∑
g∈G

ρ(hg)(v) =
1

#G

∑
g∈G

ρ(g)(v) = π(v).

We conclude that π2 = π is a projection onto Im π = V G .
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The dimension of invariants

Lemma

Let ρ : G −→ GL(V ) be a representation.

Then π =
1

#G

∑
g∈G

ρ(g) ∈ End(V ) is a projection onto V G .

Corollary

dimV G =
1

#G

∑
g∈G

χ(g).

Proof.

The matrix of π with respect to a suitable basis is

(
In 0
0 0

)
,

whence dimV G = n = Tr π = 1
#G

∑
g∈G Tr ρ(g).
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The character of Hom

Let G be a group. Recall that if V1 and V2 are representations
of G , then so is Hom(V1,V2) by

(gT )(v) = g
(
T (g−1v)

)
.
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The character of Hom

Lemma

The character of Hom(V1,V2) is χ1 χ2, where χ1 is the
character of V1 and χ2 that of V2.
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The character of Hom

Proof.

Fix bases B1 = (b1, · · · ) of V1 and C = (c1, · · · ) of V2.
Then the Ti ,j , defined by Ti ,j(bj) = ci , Ti ,j(bk) = 0 for k 6= j ,
form a basis of Hom(V1,V2).
Pick g ∈ G ; we have gTi ,j = ρ2(g)Ti ,jρ1(g)−1. Let Q be the
matrix of ρ1(g)−1 on B, and R that of ρ2(g) on C.

bn
ρ1(g)−1

7−→
∑
k

Qk,nbk
Ti,j7−→ Qj ,nci

ρ2(g)7−→ Qj ,n

∑
m

Rm,icm

so gTi ,j =
∑

m,n Qj ,nRm,iTm,n.
Thus the trace of g on Hom(V1,V2) is∑
i ,j

coeff. of Ti ,j in gTi ,j =
∑
i ,j

Qj ,jRi ,i =

(∑
i

Ri ,i

)(∑
j

Qj ,j

)

=
(

Tr ρ2(g)
)(

Tr ρ1(g−1)
)

= χ2(g)χ1(g).
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The character of Hom

Lemma

The character of Hom(V1,V2) is χ1 χ2, where χ1 is the
character of V1 and χ2 that of V2.

Corollary

If V is a representation of character χ, then the character of
its linear dual V ∨ is χ.

Proof.

V ∨ = Hom(V ,1).
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The character of Hom

Lemma

The character of Hom(V1,V2) is χ1 χ2, where χ1 is the
character of V1 and χ2 that of V2.

Corollary

Let V1,V2 be a representations of G with respective characters
χ1, χ2. Then (χ1|χ2) = dim HomG (V1,V2) ∈ Z≥0.

Proof.

Let χ = χ1 χ2 be the character of Hom(V1,V2). Then

(χ1|χ2) =
1

#G

∑
g∈G

χ1(g)χ2(g) =
1

#G

∑
g∈G

χ(g)

= dim Hom(V1,V2)G = dim HomG (V1,V2).
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Characters know everything
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First orthogonality of characters

Let G be a finite group, and let Irr(G ) be the set of characters
of isomorphism classes of irreducible representations of G .

Theorem

The set Irr(G ) is orthonormal.

Proof.

Let χ1, χ2 ∈ Irr(G ), and let V1, V2 be the corresponding
representations. Then by Schur’s lemma,

(χ1|χ2) = dim HomG (V1,V2) =

{
0 if V1 6' V2,
1 if V1 = V2.
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Consequences (Main slide of the module!)

Theorem

Let V be a representation of G of character χ. Suppose that
the decomposition of V into irreducible representations is

W⊕n1
1 ⊕ · · · ⊕W⊕nr

r .

Then χ =
∑r

j=1 njχj , where χj is the character of Wj ; thus

nj = (χ |χj) and (χ |χ) =
r∑

j=1

n2j .

Proof.

We have χ =
∑r

j=1 njχj by additivity of characters on direct
sums; the rest follows from orthonormality.
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Consequences (Main slide of the module!)

Theorem

Let V be a representation of G of character χ. Suppose that
the decomposition of V into irreducible representations is

W⊕n1
1 ⊕ · · · ⊕W⊕nr

r .

Then χ =
∑r

j=1 njχj , where χj is the character of Wj ; thus

nj = (χ |χj) and (χ |χ) =
r∑

j=1

n2j .

Corollary

V is irreducible iff. (χ |χ) = 1.
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Consequences (Main slide of the module!)

Theorem

Let V be a representation of G of character χ. Suppose that
the decomposition of V into irreducible representations is

W⊕n1
1 ⊕ · · · ⊕W⊕nr

r .

Then χ =
∑r

j=1 njχj , where χj is the character of Wj ; thus

nj = (χ |χj) and (χ |χ) =
r∑

j=1

n2j .

Corollary

For a given V , the integers nk are unique.

Corollary

Two representations of G are equivalent iff. they have the
same character.
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Consequences (Main slide of the module!)

Theorem

Let V be a representation of G of character χ. Suppose that
the decomposition of V into irreducible representations is

W⊕n1
1 ⊕ · · · ⊕W⊕nr

r .

Then χ =
∑r

j=1 njχj , where χj is the character of Wj ; thus

nj = (χ |χj) and (χ |χ) =
r∑

j=1

n2j .

Corollary

# Irr(G ) ≤ #Conj. classes in G .

NB we will prove later that this is actually an equality.
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Example: S3

Take G = S3, order #G = 6.
We already know some representations of G :

Conj. classes {1G} {(12), (13), (23)} {(123), (132)}
1 1 1 1
ε 1 −1 1
/ 2 0 −1

Perm 3 1 0

We compute (1|1) = (ε|ε) = (/|/) = 1, so they are
irreducible.
However, since (Perm|Perm) = 2, Perm is not irreducible, but
rather the direct sum of two irreducible representations.
Which ones?
We compute (Perm|1) = 1, (Perm|ε) = 0, and (Perm|/) = 1,
so we get that Perm ' 1⊕ /.

Nicolas Mascot Group representations



Isotypic components
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Morphisms from class functions

Lemma

Let ρ : G −→ GL(V ) be a representation, and let f : G −→ C
be a class function. Then Tf =

∑
g∈G f (g)ρ(g) ∈ EndG (V ).

Proof.

For all h ∈ G , we have ρ(h)Tf = ρ(h)
∑
g∈G

f (g)ρ(g)

=
∑
g∈G

f (g)ρ(h)ρ(g) =
∑
g∈G

f (g)ρ(hg) =
∑
g∈G

f (g)ρ(hgh−1)ρ(h)

but the conjugation
G −→ G
g 7−→ g ′ = hgh−1

is bijective, so

=
g ′=hgh−1

g=h−1g ′h

∑
g ′∈G

f (h−1g ′h)ρ(g ′)ρ(h) = Tf ρ(h).
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Morphisms from class functions

Lemma

Let ρ : G −→ GL(V ) be a representation, and let f : G −→ C
be a class function. Then Tf =

∑
g∈G f (g)ρ(g) ∈ EndG (V ).

Corollary

If V is irreducible, then Tf =
#G

degV
(χ | f ) IdV .

Proof.

By Schur, we haveTf = λ IdV for some λ ∈ C. Take traces.
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Isotypical components

Theorem (Formula for projection on isotypical component)

Let V =
⊕

χ∈IrrG W
⊕nχ
χ be the complete decomposition of a

representation of G . Then for each χ, the projection on W
⊕nχ
χ

is given by πχ =
degχ

#G

∑
g∈G

χ(g)eg ∈ C[G ].

Proof.

Let T =
degχ

#G

∑
g∈G

χ(g)eg =
degχ

#G
Tχ.

Then for all ψ ∈ Irr(G ), T acts on Wψ by λ Id, where

λ =
degχ

#G

#G

degψ
(ψ |χ) =

{
1 if ψ = χ,
0 if ψ 6= χ.
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Isotypical components

Theorem (Formula for projection on isotypical component)

Let V =
⊕

χ∈IrrG W
⊕nχ
χ be the complete decomposition of a

representation of G . Then for each χ, the projection on W
⊕nχ
χ

is given by πχ =
degχ

#G

∑
g∈G

χ(g)eg ∈ C[G ].

Corollary (Isotypical components)

For each χ, the subset W
⊕nχ
χ does not depend of the chosen

decomposition of V . It is called the χ-isotypical component.
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Example: symmetries

Let G = C2 = {1, g} with g 2 = 1. A representation ρ of G is
determined by S = ρ(g) since ρ(1) = Id. Besides S2 = Id, so
S is diagonalisable with eigenvalues ±1, so S is a symmetry.

The irreducible representations of G are those of degree 1,
namely 1 and ε : G

∼−→ {±1}.

Given a symmetry S ∈ End(V ), the isotypical components are

V1 = Ker(S − Id) = V+ and Vε = Ker(S + Id) = V−.

The decomposition V = V+ ⊕ V− is canonical;
the decompositions V+ = 1

⊕ dimV+ , V− = ε⊕ dimV− are not.

The projectors are π1 = 1
2
(1 + S), πε = 1

2
(1− S).
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