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Decomposition of the

regular representation




The character of a permutation representation

Let G be a group. If G acts on a set X, we get a permutation
representation C[X].

The character of this representation is given by
x(g) = #Fixg
where Fixg = {x € X | g- x=x} C X.

C[X] has basis {ex}xex, so
X(&) = Doxex coeff. of e, in (ge, = eg.x). O
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Decomposition of the regular representation

G O X = G by g+ x = gx ~ regular representation C[G].

This is a faithful (= injective) representation of G, since this
action of G on itself is faithful: if g-x = x for all x € X,
then g ]-G = 1G, SO g8 = ]-G-

This shows that every finite group admits a faithful
representation.

In particular, if G is non-Abelian, then G has a least one
irreducible representation of degree > 2; more on this later.
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Decomposition of the regular representation

G O X = G by g - x = gx ~ regular representation C[G].

The decomposition of the regular representation is

cle~ @ s,

pElrr G

Proof
Let n = #G. The character of C[G] is
nif g =1g¢,

Xreg(8) = #Fixg =#{he X =G| gh= h}:{ 0 else.

Therefore, if p is an irreducible representation of character x,,,
then its multiplicity in the decomposition of C[G] is

1
(Xreg | Xp) ZXreg = ;”Xp(lG) =degp. [
gEG
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Decomposition of the regular representation

G O X = G by g x = gx ~ regular representation C[G].

The decomposition of the regular representation is

cl6]~ @ po%er.

pElrr G

#G = ) (degp)”

pElrr G

For G = S3, we have seen that Irr G = {1, ¢, <}, so
(C[53] ~ ILGBdeg]l @geadege D <]69deg<1 —1GeDaD
and indeed #5; = 6 = 12 4 12 + 22,




Decomposition of the regular representation

G O X = G by g-x = gx ~ regular representation C[G].

The decomposition of the regular representation is
Cl6l~ € o,
pElrr G

Corollary

For all g € G, Z (deg x)x(g) = { O#else.g o
Xx€Elrr G

We will see later on that this is an avatar of the second
orthogonality relations of characters.
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Wedderburn on C[G]




Algebras (not examinable)

Definition
Let K be a field. A K-algebra A is a vector space over K
which is also a ring, and such that

Mab) = (Aa)b = a(Ab) forall \ € K and a,b € A.

| A\

Example

The polynomial ring K[x] and the matrix ring M, (K) are
actually K-algebras.

C[G] is a C-algebra.
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Opposite rings

Let R be a ring.

Definition (Opposite ring)

We can define a new ring R°PP by keeping the same set,
keeping the addition, and defining multiplication by

XXRoppy:_yXRX.

If R is commutative, then R°PP = R.

For any field K and n € N, we have M ,(K)°PP ~ M ,(K)
by transposition.
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Opposite rings

Let R be a ring.

Let M = R viewed as an R-module. Then Endg(M) = R°PP.

Proof.

The map
RoPP — Endg(M)
r — (g, :me— mr)

is injective because p,(1) = r,

surjective because for all f € Endg(M), we must have

f(r) = f(rl) = rf(1) for all r € M = R whence f = pf(1),
and it is a ring morphism since i, © 15 = s O]

V.
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Wedderburn's theorem (not examinable)

Theorem (Wedderburn)

Let K be a field, and let A be a K-algebra. If A is semi-simple
as an A-module, then

A~ [ Ma(D))

where the D; are division rings containing K.

This applies in particular to A = C[G], since the regular
representation is semisimple.
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Endomorphisms of direct sums

Lemma

Let R be a ring, and M be an R-module. If M = My & M,,
- EndR(l\/Il) HomR(Mg, Ml)
Sl (4] = (HomR(/\/ll, M)  Endg(M,) )

f(my + my) = fA(my + my) + H(my + my)
= fin1(m) + hoa(m2) + fiso(my) + fHho(my).

This really is a ring isomorphism: if f, g € Endg(M) with

f = f1—>1 f2—>1 g = 8151 821
fl—>2 f2—>2 ’ 8152 822 ’
then (f o g)151 = fis1 08151 + fhy1 0 8150, etc. O




Endomorphisms of direct sums

Lemma

Let R be a ring, and M be an R-module. If M = My & M,
-~ EndR(M]_) HomR(Mg, M]_)
Sl (b)) = <HomR(M1, M)  Endg(M,) )

(  Endy(Z/AZ)  Homy(Z/2Z,Z/4Z)
Endz(Z/4Z ® Z/2Z) _<HomZ(Z/4Z7 Z./27) ° End(Z/2Z) >

(2 )
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Endomorphisms of direct sums

Let R be a ring, and M be an R-module. If M = My & M5,
~ EndR(l\/Il) HomR(MQ, Ml)
Sl = <HomR(M1, M)  Endg(Ms) )

If M = M; & M, where M; £ M, are both simple, then

Endg(M) =~ (E”d%("/’l) End:’(Mz)) ~ Endg(M:) x Endg(Ms).

<
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Wedderburn on C[G]

Let G be a finite group, and let Irr G = {p1, - , pm}, SO that

ClGl2p@ & @ Bpm®- D P
—_——— —_———

deg p1 deg pm

From Schur’s lemma and the above, we deduce that

C[G]°*™ ~ End¢(C[G])

Maeg g ((Enda(p1)) 0
0 - Mdeg pm ( EndG(Pm))
H./\/ldegp, End HMdegp'
-1
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Wedderburn on C[G]

Let G be a finite group, and let Irr G = {p1,--- , pm}, so that
ClGl=pi® - ®p® B pm® - P pm.
N———— N———

deg p1 deg pm
From Schur’s lemma and the above, we deduce that

C[G]*™ ~ End¢(C[G])

~HMdegp (Ende(p)) HMdegp,

i=1
Taking opposites, we conclude that

C[G] = C[G]PP* ~ ( 11 Mdegp«m)

pElrr G

= H Meg o (C) PP =~ H Maeg p(C).

pElrr G pElrr G
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The number of
irreducible representations




Definition (Centre)

The centre of a ring R is

Z(R)={z€ R | zr=rz forall r € R}.

It is a commutative subring.

If R is actually an algebra, then Z(R) is a subspace, and
therefore a subalgebra.

Theorem (Centre of a matrix algebra = scalar matrices)

For every field K and n € N, we have

Z(Mo(K)) = {M, A€ K} ~ K.




The centre of C[G]

Let x =3, A\g€ € C[G]. Then
x € Z(C[G]) <= g — Az is a class function.

x € Z(C[G]) <= xy = yx for all y € C[G]
<~ xe, = epx forall he G
> Meegh=> Mgeng forall he G

geai geai

<= g > \g is a class function. O

Nicolas Mascot Group representations



The centre of C[G]

Proposition
Let x =3, Ag€ € C[G]. Then
x € Z(C[G]) <= g+ Az is a class function.

If M is an R-module, then for all z € Z(R),
,b: M —
m +——

since for all A € R, ,(Am) = zAm = A\zm = A\f,(m).

is an R-module endomorphism,

This explains why Ty = 3" _. f(g)g acts as a representation
endomorphism on every representation if f is a class function.
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The centre of C[G]

Let x =3, Ag€ € C[G]. Then
x € Z(C[G]) <= g+ Az is a class function.

Corollary

When C ranges over the conjugacy classes of G,
the ec = >, g form a C-basis of Z(C[G]).
In particular, dimc Z(C[G]) = # conj. classes in G.
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The number of irreducible representations

Theorem (Number of irr reps = number of conj classes)

Let G be a finite group. Then
#1rr(G) = #Conj. classes in G.

#Conj. classes in G = dim¢ Z(C[G])

= dim¢ Z ( 1T Mdegp(C)>

pElrr G

:dim(c H Z(Mdegp((c))

pElrr G

=dim¢ J[ C=#IrG. O

pElrr G
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The number of irreducible representations

Theorem (Number of irr reps = number of conj classes)

Let G be a finite group. Then
#1rr(G) = #Conj. classes in G.

Corollary

Irreducible characters form an orthonormal basis of the space
of class functions.
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The number of irreducible representations

Theorem (Number of irr reps = number of conj classes)

Let G be a finite group. Then
#1rr(G) = #Conj. classes in G.

G is Abelian <= All irr. reps. of G have deg. 1.

#G = Zpelrr G(dim 10)2
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Interpretation of the Wedderburn decomp. of C[G]

Lemma (Decomposition of M ,(K) as a module over itself)

Let K be a field n € N, and let S = K" viewed as

an M, (K)-module (column vectors).

The M, (K)-module M,(K) decomposes as S @ --- @ S.
—_————

n

Besides, S is a simple M ,(K)-module.

Proof.

Let A, B € M, (K). If the columns of B are By, --- , B,, then
the columns of AB are AB;,--- ,AB,.

Let 0# T C S be a sub-M,(K)-module, and let 0 £t € T.

For all s € S, there is A € M, (K) such that s = At,

soT DS. (]
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Interpretation of the Wedderburn decomp. of C[G]

Theorem

Up to conjugacy, the Wedderburn isomorphism
C[G] ~ H Maegp(C

pElrr(G)

is simply given by x — (p(x))pelrr(c).

Its inverse takes
(0’... 707|d,0,--- ,0) € H Mdegp((c)
pElrr(G)

E X,(&)eg (Fourier inversion formula).
gEG
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Interpretation of the Wedderburn decomp. of C[G]

Proof

For each x € Irr(G), let W, be the irreducible representation
of character y, and let e, = degx e D gcG x(g)e; € Z(C[G]).
As C[G]-modules,

IT we™~clel~ [] Maer(©~ [ S

XElrr(G) XElrr(G) XElrr(G)

Besides, e, acts on W, as Id if 1) = x and as 0O else, so
Cl6l =[] Muaen(©)

X€lrr(G)
X — t(y = yX)I erlrr (G) W@"X

takes e, to (0,---,0,1d,0,---,0). In particular, e, acts on S,
X
as Id if ¢y = x and as 0 else, so S, >~ W,,. O
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The character table




The character table of a group
Definition (Character table)

The character table of a finite group G is obtained by putting
the values of the characters of Irr G on each conjugacy class
of G.

It is a square matrix of size # Irr(G) = #Conj. classes in G.

v

Example (Character table of S;

)
d (12) (123)

Rep. of class | |
#class| 1 3 2
1|1 1 1
el -1 1
<12 0 -1
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The conjugacy principle

Let G be a group of “transformations”. If g € G is a
“transformation” of “parameters” x,y,---, then for all h € G,
hgh=! is the “transformation” of “parameters” h-x,h-y,---.

Example

Let G = SO3(R). If g € G is the rotation of axis £ and angle
0, then for all h € G, hgh™! is the rotation of axis h(¢) and
angle 6.
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The conjugacy principle

The conjugacy classes of G = Dy
AY / O-
. & 2"
o[ N ar
7 | QO'/
are {Id}, {p, p*}, {p?}, {0, 0'}, {1, 7'}
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The conjugacy principle

Example

Let G =S, forsomeneN. If o= (ip - ix)(r--ji) -+ € S,
then for all 7 € S,

ToT ! = (r(i) - 7(i) (TG) - - - 70n)) - - - -
~ a,0’ € §, conjugate iff. same shape of cycle
decomposition.
~» Conjugacy classes of S, <— partitions n=ny + --- + n,.

For example, the conjugacy classes of S are:

{Id} «— 5=14+14+1+1+41,
{(xx)} — 5=24+14+1+1,
{(x*%)} +— 5=3+1+1,
{(x*x*xx)} +— 5=4+41,

{(x**xx%x)} +— 5=05
{(x%)(x%)} +— 5=2+2+1,
{(x**)(xx)} <— 5=3+2.
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Example: S,

Conjugacy classes of S, «— possible cycle decompositions
~ 5 classes, represented by Id, (12), (123), (1234), (12)(34).
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)

Conjugacy classes of S, «— possible cycle decompositions
~ 5 classes, represented by Id, (12), (123), (1234), (12)(34).
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Example: S,

Id (12) (123) (1234) (12)(34)
1 6 8 6 3

Rep. of class
# class

Conjugacy classes of S, «— possible cycle decompositions
~~ 5 classes, represented by Id, (12), (123), (1234), (12)(34).
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Example: S,

Id (12) (123) (1234) (12)(34)
1 6 8 6 3

Rep. of class
# class

Conjugacy classes of S, «— possible cycle decompositions
~> 5 classes, represented by Id, (12), (123), (1234), (12)(34).

~» b irreducible representations, of degree n; < n, < n3 < ny < ns.
n; = 1 because of 1.
nd4n3+n+nj+nk=#S,=24,503<ns <4

If ns = 4, then n? + n? 4+ n? =24 — 12 — 42 = 7, impossible.
So ns =3, n? + n? + nf = 24 — 12 — 32 = 14, whence

3<n, <3, 5005+ n+3=5.
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class|1 6 8 6 3
111
1
2
3
3

~» b irreducible representations, of degree n; < n, < n3 < ny < ns.
n; = 1 because of 1.
n?+n3+n3+n;+n2=#S,=24s03<ns <4

If ns =4, then n3 + n3 + n2 =24 — 1> — 42 = 7, impossible.
So ns =3, n3 + n? + n? = 24 — 12 — 32 = 14, whence
3<ns<3,s0n3+n+3=5.
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
/1 1 1 1 1
el -1 1 -1 1
2
3
3
Perm | 4 2 1 0 0

Throw in some representations we can think of: 1, ¢, the
permutation representation Perm induced by S, O {1,2,3,4}.
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
/1 1 1 1 1
el -1 1 -1 1
2
3
3
Perm |4 2 1 0 0

Throw in some representations we can think of: 1, ¢, the
permutation representation Perm induced by S, O {1,2,3,4}.
We find (Perm | Perm) =2 and (Perm | 1) =1,

so Perm ~ 1 & x with x irreducible of degree 3.
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
/1 1 1 1 1
el -1 1 -1 1
2
x|3 1 0 -1 -1
3

Throw in some representations we can think of: 1, ¢, the
permutation representation Perm induced by S, O {1,2,3,4}.
We find (Perm | Perm) =2 and (Perm | 1) =1,

so Perm ~ 1 ¢ x with yx irreducible of degree 3.
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
111 1 1 1 1
el -1 1 -1 1
2
X3 1 0o -1 1
3

The character of Hom(, ¢) is x€ = xe. Since
(xe|xe) = (x|x) =1, itis irreducible.

Nicolas Mascot Group representations



Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
111 1 1 1 1
el -1 1 -1 1
2
X3 1 0o -1 1
xe| 3 -1 0 1 -1

The character of Hom(, ¢) is x€ = xe. Since

(xe|xe) = (x|x) =1, itis irreducible.
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)

#class| 1 6 8 6 3
111 1 1 1 1

el 1 -1 1 -1 1

2

x|3 1 0 -1 -1

xe|3 -1 0 1 -1

219 1 0 1 1

The character of Hom(, x) is xX = x?. We find

O =4 (211) =1 (1x) =1 (*lxe) =1,
~ x%2 =1+ x + xe + 1 where 1) is the remaining character.

Alternatively, the regular representation C[S,] has character R
given by R(Id) =24, R(g) =0 if g # Id, and decomposes as
R=14¢42¢y+3x + 3xe.



Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
/1 1 1 1 1
el -1 1 -1 1
w2 0 -1 0 2
x|3 1 0o -1 -1
xe|l3 -1 0 1 1

The character of Hom(, x) is xX = x?. We find
O =4 0211) =1 (1x) =1 (Plxe) =1,
~ x%2 =1+ x + xe + 1 where 1) is the remaining character.

Alternatively, the regular representation C[S,] has character R
given by R(Id) =24, R(g) =0 if g # Id, and decomposes as
R=14¢4 29+ 3x + 3xe.
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Normal subgroups on the character table

Theorem (Normal subgroups on character table)
For each x € lrr G, let
Ny = {g € G |x(g) = degx}

Then the N, are normal subgroups of G. Conversely, every
normal subgroup of G is an intersection of some of the N, .

Proof.

Recall that if p has character y, then

g € Kerp < x(g) =degx. Thus N, = Kerp< G.

Conversely, let N < G. The regular representation C[G/N] is a
faithful representation of G/N; we may view it as a
representation R of G via G —— G/N which thus satisfies
Ker R = N. Therefore, if R ~ € p®" with each p irreducible
and n, > 1, then N = (Kerp = N,,. O
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Normal subgroups on the character table

Theorem (Normal subgroups on character table)

For each x € lrr G, let
Ny ={g € G |x(g) = degx}

Then the N, are normal subgroups of G. Conversely, every
normal subgroup of G is an intersection of some of the N, .

Theorem (Derived subgroup on character table)

The derived subgroup of G is D(G) = ﬂ N,,.
deg x=1

As GL(1,C) = C* is Abelian,
Irr (G/D(G)) = {x € Irr G | degx = 1}.
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Normal subgroups on the character table

Theorem (Normal subgroups on character table)

For each x € Irr G, let

Ny ={g € G |x(g) = degx}
Then the N, are normal subgroups of G. Conversely, every
normal subgroup of G is an intersection of some of the N, .

Theorem (Derived subgroup on character table)

The derived subgroup of G is D(G) = ﬂ N, .

deg x=1

Corollary

We can see the normal subgroups and the derived subgroup of
G on its character table. In particular, we can see whether G
is simple and whether it is perfect.
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Example: S,

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
111 1 1 1 1
el 1 -1 1 -1 1
Y2 0 -1 0 2
x|3 1 0 -1 -1
xe|3 -1 0 1 -1

We find the normal subgroups N. = A and Ny, = V,. Since
N. D N, these are all the non-trivial normal subgroups of S,.
Anyway, S, is not a simple group.

The derived subgroup is

ﬂ Kerp = N. = Ay.
deg p=1

In particular, S4 is not perfect.
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The second
orthogonality relations

&

extra results




Second orthogonality of characters
Theorem (Second orthogonality of characters)

Let g,h € G, and let C, C G be the conjugacy class of h.
— G/#C, ifg € Cp,
Then 3 \(e)x(h) = { ) S

0 else.
XElrr G

fn: G —> C defined by f(g) =1if g € Gy, f(g) =0 else, is
a class function. As Irr G is an orthonormal basis,

fo=Y (fl X)X,
XElrr G c
(fal x) =7c Z %X(h)
getG
C _
~ i(g) = % > (Fix(e) =
x€Elrr G

Nicolas Mascot Group representations



Second orthogonality of characters

Theorem (Second orthogonality of characters)
Let g,h € G, and let C, C G be the conjugacy class of h.

Then Z X(g)WZ { #G/#Cy if g € Gy,

0 else.

XElrr G

#G/#Cy = #{g € G | gh= hg}.

> (degx)x(g) = { o WES e

0 else.
x€Elrr G
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Second orthogonality of characters
Theorem (Second orthogonality of characters)

Let g,h € G, and let C, C G be the conjugacy class of h.
—— G/#Cy ifg € Cp,
Then ) x(g)x(h)z{ #C/#Ch g € G

0 else.
XElrr G

Example (Finding a character when all the others are known)
We can easily determine the missing character ¢ of S;:

Rep. of class | Id (12) (123) (1234) (12)(34)
#class| 1 6 8 6 3
/1 1 1 1 1
ell -1 1 -1 1
(4
x|3 1 0 =1 -1
x| 3 -1 0 1 -1
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Irreducible degrees divide #G

Theorem (Irreducible degrees divide #G)
Let G be a finite group. Then deg x | #G for all x € Irr(G).

Admitted. ]

The degrees of the irreducible representations of G = 5,
are 1,1,2, 3,3, which all divide #G = 24.
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Burnside's theorem (Non examinable)

Theorem (Burnside)

Let G be a finite group. If #G has at most 2 distinct prime
factors, then G is solvable.

Admitted, but the proof relies on representation theory! H

Corollary

Let G be a finite group. If G is simple and non-Abelian,
then #G has at least 3 distinct prime factors.

The smallest non-Abelian simple group is As, whose order is
60 =22 -3 5.

The next one has order 168 =23-3.7.




