MAU34104 Group representations 4 - Character tables

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: March 11, 2021



**Trinity College Dublin** Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Let G be a group. If G acts on a set X, we get a permutation representation  $\mathbb{C}[X]$ .

# Proposition

The character of this representation is given by

$$\chi(g) = \# \operatorname{Fix} g$$

where 
$$\operatorname{Fix} g = \{x \in X \mid g \cdot x = x\} \subseteq X$$
.

# Proof.

$$\mathbb{C}[X] \text{ has basis } \{e_x\}_{x \in X} \text{, so} \\ \chi(g) = \sum_{x \in X} \text{ coeff. of } e_x \text{ in } (ge_x = e_{g \cdot x}).$$

$$G \circlearrowright X = G$$
 by  $g \cdot x = gx \rightsquigarrow$ regular representation  $\mathbb{C}[G]$ .

#### Remark

This is a faithful (= injective) representation of G, since this action of  $\overline{G}$  on itself is faithful: if  $g \cdot x = x$  for all  $x \in X$ , then  $g \cdot 1_G = 1_G$ , so  $g = 1_G$ .

This shows that every finite group admits a faithful representation.

In particular, if G is non-Abelian, then G has a least one irreducible representation of degree  $\geq 2$ ; more on this later.

 $G \circlearrowright X = G$  by  $g \cdot x = gx \rightsquigarrow$ <u>regular representation</u>  $\mathbb{C}[G]$ .

#### Theorem

The decomposition of the regular representation is

$$\mathbb{C}[G] \simeq \bigoplus_{
ho \in \operatorname{Irr} G} 
ho^{\oplus \operatorname{deg} 
ho}.$$

# Proof.

Let 
$$n = \#G$$
. The character of  $\mathbb{C}[G]$  is  
 $\chi_{\text{reg}}(g) = \# \text{Fix } g = \#\{h \in X = G \mid gh = h\} = \begin{cases} n \text{ if } g = 1_G, \\ 0 \text{ else.} \end{cases}$   
Therefore, if  $\rho$  is an irreducible representation of character  $\chi_{\rho}$ , then its multiplicity in the decomposition of  $\mathbb{C}[G]$  is  
 $(\chi_{\text{reg}} \mid \chi_{\rho}) = \frac{1}{n} \sum_{g \in G} \chi_{\text{reg}}(g) \overline{\chi_{\rho}(g)} = \frac{1}{n} n \overline{\chi_{\rho}(1_G)} = \text{deg } \rho.$ 

 $G \circlearrowright X = G$  by  $g \cdot x = gx \rightsquigarrow$  regular representation  $\mathbb{C}[G]$ .

#### Theorem

The decomposition of the regular representation is

$$\mathbb{C}[G] \simeq \bigoplus_{\rho \in \operatorname{Irr} G} \rho^{\oplus \deg \rho}.$$

# Corollary

$$\#G = \sum_{\rho \in \operatorname{Irr} G} (\deg \rho)^2.$$

# Example

For 
$$G = S_3$$
, we have seen that Irr  $G = \{\mathbb{1}, \varepsilon, \triangleleft\}$ , so  
 $\mathbb{C}[S_3] \simeq \mathbb{1}^{\oplus \deg \mathbb{1}} \oplus \varepsilon^{\oplus \deg \varepsilon} \oplus \triangleleft^{\oplus \deg \triangleleft} = \mathbb{1} \oplus \varepsilon \oplus \triangleleft \oplus \triangleleft$   
and indeed  $\#S_3 = 6 = 1^2 + 1^2 + 2^2$ .

$$G \circlearrowright X = G$$
 by  $g \cdot x = gx \rightsquigarrow$ regular representation  $\mathbb{C}[G]$ .

#### Theorem

The decomposition of the regular representation is

$$\mathbb{C}[G]\simeq igoplus_{
ho\in {\sf Irr}\;G}
ho^{\oplus\deg
ho}.$$

# Corollary For all $g \in G$ , $\sum_{\chi \in Irr G} (\deg \chi) \chi(g) = \begin{cases} \#G \text{ if } g = 1_G, \\ 0 \text{ else.} \end{cases}$ .

We will see later on that this is an avatar of the second orthogonality relations of characters.

# Wedderburn on $\mathbb{C}[G]$

# Definition

Let K be a field. A <u>K-algebra</u> A is a vector space over K which is also a ring, and such that

 $\lambda(ab) = (\lambda a)b = a(\lambda b)$  for all  $\lambda \in K$  and  $a, b \in A$ .

#### Example

The polynomial ring K[x] and the matrix ring  $\mathcal{M}_n(K)$  are actually K-algebras.

#### Example

 $\mathbb{C}[G]$  is a  $\mathbb{C}$ -algebra.

# **Opposite rings**

# Let R be a ring.

# Definition (Opposite ring)

We can define a new ring  $R^{opp}$  by keeping the same set, keeping the addition, and defining multiplication by

 $x \times_{R^{opp}} y = y \times_R x.$ 

#### Example

If R is commutative, then  $R^{opp} = R$ .

#### Example

For any field K and  $n \in \mathbb{N}$ , we have  $\mathcal{M}_n(K)^{\text{opp}} \simeq \mathcal{M}_n(K)$  by transposition.

# **Opposite rings**

Let R be a ring.

#### Lemma

Let M = R viewed as an R-module. Then  $End_R(M) = R^{opp}$ .

#### Proof.

The map

$$\begin{array}{rcl} R^{\operatorname{opp}} & \longrightarrow & \operatorname{End}_R(M) \ r & \longmapsto & (\mu_r: m \mapsto mr) \end{array}$$

is injective because  $\mu_r(1) = r$ , surjective because for all  $f \in \operatorname{End}_R(M)$ , we must have f(r) = f(r1) = rf(1) for all  $r \in M = R$  whence  $f = \mu_{f(1)}$ , and it is a ring morphism since  $\mu_r \circ \mu_s = \mu_{sr}$ .

#### Theorem (Wedderburn)

Let K be a field, and let A be a K-algebra. If A is semi-simple as an A-module, then

$$A\simeq\prod_i\mathcal{M}_{n_i}(D_i)$$

where the  $D_i$  are division rings containing K.

This applies in particular to  $A = \mathbb{C}[G]$ , since the regular representation is semisimple.

# Endomorphisms of direct sums

#### Lemma

Let R be a ring, and M be an R-module. If 
$$M = M_1 \oplus M_2$$
,  
 $\operatorname{End}_R(M) \simeq \begin{pmatrix} \operatorname{End}_R(M_1) & \operatorname{Hom}_R(M_2, M_1) \\ \operatorname{Hom}_R(M_1, M_2) & \operatorname{End}_R(M_2) \end{pmatrix}$ .

#### Proof.

$$egin{aligned} f(m_1+m_2) &= f_1(m_1+m_2) + f_2(m_1+m_2) \ &= f_{1
ightarrow 1}(m_1) + f_{2
ightarrow 1}(m_2) + f_{1
ightarrow 2}(m_1) + f_{2
ightarrow 2}(m_2). \end{aligned}$$

This really is a ring isomorphism: if  $f, g \in \operatorname{End}_R(M)$  with

$$f=egin{pmatrix} f_{1
ightarrow 1}&f_{2
ightarrow 1}\ f_{1
ightarrow 2}&f_{2
ightarrow 2}\end{pmatrix},\quad g=egin{pmatrix} g_{1
ightarrow 1}&g_{2
ightarrow 1}\ g_{1
ightarrow 2}&g_{2
ightarrow 2}\end{pmatrix},$$

then  $(f \circ g)_{1 \to 1} = f_{1 \to 1} \circ g_{1 \to 1} + f_{2 \to 1} \circ g_{1 \to 2}$ , etc.

#### Lemma

Let R be a ring, and M be an R-module. If 
$$M = M_1 \oplus M_2$$
,  
 $\operatorname{End}_R(M) \simeq \begin{pmatrix} \operatorname{End}_R(M_1) & \operatorname{Hom}_R(M_2, M_1) \\ \operatorname{Hom}_R(M_1, M_2) & \operatorname{End}_R(M_2) \end{pmatrix}$ .

# Example

$$\begin{split} \mathsf{End}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) \simeq & \begin{pmatrix} \mathsf{End}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z}) & \mathsf{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}) \\ \mathsf{Hom}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) & \mathsf{End}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}) \end{pmatrix} \\ \simeq & \begin{pmatrix} \mathbb{Z}/4\mathbb{Z} & 2\mathbb{Z}/4\mathbb{Z} \\ \mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \end{pmatrix}. \end{split}$$

# Lemma

Let R be a ring, and M be an R-module. If 
$$M = M_1 \oplus M_2$$
,  
 $\operatorname{End}_R(M) \simeq \begin{pmatrix} \operatorname{End}_R(M_1) & \operatorname{Hom}_R(M_2, M_1) \\ \operatorname{Hom}_R(M_1, M_2) & \operatorname{End}_R(M_2) \end{pmatrix}$ .

# Example

If 
$$M = M_1 \oplus M_2$$
 where  $M_1 \not\simeq M_2$  are both simple, then  
 $\operatorname{End}_R(M) \simeq \begin{pmatrix} \operatorname{End}_R(M_1) & 0\\ 0 & \operatorname{End}_R(M_2) \end{pmatrix} \simeq \operatorname{End}_R(M_1) \times \operatorname{End}_R(M_2).$ 

# Wedderburn on $\mathbb{C}[G]$

Let G be a finite group, and let Irr  $G = \{\rho_1, \cdots, \rho_m\}$ , so that



From Schur's lemma and the above, we deduce that

$$\mathbb{C}[G]^{\mathsf{opp}} \simeq \mathsf{End}_G(\mathbb{C}[G]) \ \simeq \begin{pmatrix} \mathcal{M}_{\deg 
ho_1}ig(\operatorname{End}_G(
ho_1)ig) & 0 \ & \ddots & \ & 0 & \mathcal{M}_{\deg 
ho_m}ig(\operatorname{End}_G(
ho_m)ig) \end{pmatrix} \ \simeq \prod_{i=1}^m \mathcal{M}_{\deg 
ho_i}ig(\operatorname{End}_G(
ho_i)ig) \simeq \prod_{i=1}^m \mathcal{M}_{\deg 
ho_i}(\mathbb{C}).$$

# Wedderburn on $\mathbb{C}[G]$

Let G be a finite group, and let Irr  $G = \{\rho_1, \cdots, \rho_m\}$ , so that  $\mathbb{C}[G] \simeq \underbrace{\rho_1 \oplus \cdots \oplus \rho_1}_{\deg \rho_1} \oplus \cdots \oplus \underbrace{\rho_m \oplus \cdots \oplus \rho_m}_{\deg \rho_m}$ . From Schur's lemma and the above, we deduce that  $\mathbb{C}[G]^{opp} \simeq \operatorname{End}_G(\mathbb{C}[G])$  $\simeq \prod_{i=1}^m \mathcal{M}_{\deg \rho_i}(\operatorname{End}_G(\rho_i)) \simeq \prod_{i=1}^m \mathcal{M}_{\deg \rho_i}(\mathbb{C}).$ 

Taking opposites, we conclude that

$$\mathbb{C}[G] = \mathbb{C}[G]^{\mathsf{opp}\mathsf{opp}} \simeq \left(\prod_{\rho \in \mathsf{Irr} \ G} \mathcal{M}_{\deg \rho}(\mathbb{C})\right)^{\mathsf{opp}}$$
$$\simeq \prod_{\rho \in \mathsf{Irr} \ G} \mathcal{M}_{\deg \rho}(\mathbb{C})^{\mathsf{opp}} \simeq \prod_{\rho \in \mathsf{Irr} \ G} \mathcal{M}_{\deg \rho}(\mathbb{C}).$$

# The number of irreducible representations

# Centres

# Definition (Centre)

The centre of a ring R is

$$Z(R) = \{z \in R \mid zr = rz \text{ for all } r \in R\}.$$

It is a commutative subring.

#### Remark

If R is actually an algebra, then Z(R) is a subspace, and therefore a subalgebra.

Theorem (Centre of a matrix algebra = scalar matrices)

For every field K and  $n \in \mathbb{N}$ , we have

$$Z(\mathcal{M}_n(K)) = \{\lambda I_n, \lambda \in K\} \simeq K.$$

# The centre of $\mathbb{C}[G]$

# Proposition

Let 
$$x = \sum_{g \in G} \lambda_g e_g \in \mathbb{C}[G]$$
. Then  
 $x \in Z(\mathbb{C}[G]) \iff g \mapsto \lambda_g$  is a class function.

# Proof.

$$x \in Z(\mathbb{C}[G]) \iff xy = yx \text{ for all } y \in \mathbb{C}[G]$$
$$\iff xe_h = e_hx \text{ for all } h \in G$$
$$\iff \sum_{g \in G} \lambda_g e_{gh} = \sum_{g \in G} \lambda_g e_{hg} \text{ for all } h \in G$$
$$\iff g \mapsto \lambda_g \text{ is a class function.}$$

# The centre of $\mathbb{C}[G]$

# Proposition

Let 
$$x = \sum_{g \in G} \lambda_g e_g \in \mathbb{C}[G]$$
. Then  
 $x \in Z(\mathbb{C}[G]) \iff g \mapsto \lambda_g$  is a class function.

#### Remark

If *M* is an *R*-module, then for all  $z \in Z(R)$ ,  $f_z: M \longrightarrow M$   $m \longmapsto zm$  is an *R*-module endomorphism, since for all  $\lambda \in R$ ,  $f_z(\lambda m) = z\lambda m = \lambda zm = \lambda f_z(m)$ .

This explains why  $T_f = \sum_{g \in G} f(g)g$  acts as a representation endomorphism on every representation if f is a class function.

# The centre of $\mathbb{C}[G]$

# Proposition

Let 
$$x = \sum_{g \in G} \lambda_g e_g \in \mathbb{C}[G]$$
. Then  
 $x \in Z(\mathbb{C}[G]) \iff g \mapsto \lambda_g$  is a class function.

#### Corollary

When C ranges over the conjugacy classes of G, the  $e_C = \sum_{g \in C} e_g$  form a  $\mathbb{C}$ -basis of  $Z(\mathbb{C}[G])$ . In particular, dim<sub> $\mathbb{C}$ </sub>  $Z(\mathbb{C}[G]) = \#$  conj. classes in G.

# The number of irreducible representations

Theorem (Number of irr reps = number of conj classes)

Let G be a finite group. Then # Irr(G) = # Conj. classes in G.

### Proof.

$$\# \operatorname{Conj. classes in} \ G = \dim_{\mathbb{C}} Z(\mathbb{C}[G])$$

$$= \dim_{\mathbb{C}} Z\left(\prod_{\rho \in \operatorname{Irr} G} \mathcal{M}_{\deg \rho}(\mathbb{C})\right)$$

$$= \dim_{\mathbb{C}} \prod_{\rho \in \operatorname{Irr} G} Z(\mathcal{M}_{\deg \rho}(\mathbb{C}))$$

$$= \dim_{\mathbb{C}} \prod_{\rho \in \operatorname{Irr} G} \mathbb{C} = \# \operatorname{Irr} G.$$

Theorem (Number of irr reps = number of conj classes)

Let G be a finite group. Then # Irr(G) = # Conj. classes in G.

# Corollary

Irreducible characters form an orthonormal <u>basis</u> of the space of class functions.

# The number of irreducible representations

Theorem (Number of irr reps = number of conj classes)

Let G be a finite group. Then  $\# \operatorname{Irr}(G) = \# \operatorname{Conj.} \ classes \ in \ G.$ 

#### Corollary

G is Abelian  $\iff$  All irr. reps. of G have deg. 1.

# Proof.

$$\#G = \sum_{\rho \in \operatorname{Irr} G} (\dim \rho)^2.$$

# Interpretation of the Wedderburn decomp. of $\mathbb{C}[G]$

Lemma (Decomposition of  $\mathcal{M}_n(K)$  as a module over itself)

Let K be a field,  $n \in \mathbb{N}$ , and let  $S = K^n$  viewed as an  $\mathcal{M}_n(K)$ -module (column vectors). The  $\mathcal{M}_n(K)$ -module  $\mathcal{M}_n(K)$  decomposes as  $\underbrace{S \oplus \cdots \oplus S}_n$ .

Besides, S is a simple  $\mathcal{M}_n(K)$ -module.

#### Proof.

Let  $A, B \in \mathcal{M}_n(K)$ . If the columns of B are  $B_1, \dots, B_n$ , then the columns of AB are  $AB_1, \dots, AB_n$ . Let  $0 \neq T \subseteq S$  be a sub- $\mathcal{M}_n(K)$ -module, and let  $0 \neq t \in T$ . For all  $s \in S$ , there is  $A \in \mathcal{M}_n(K)$  such that s = At, so  $T \supseteq S$ .

# Interpretation of the Wedderburn decomp. of $\mathbb{C}[G]$

#### Theorem

Up to conjugacy, the Wedderburn isomorphism

$$\mathbb{C}[G] \simeq \prod_{
ho \in \mathsf{Irr}(G)} \mathcal{M}_{\deg 
ho}(\mathbb{C})$$

is simply given by  $x \mapsto (\rho(x))_{\rho \in Irr(G)}$ .

Its inverse takes

$$(0, \cdots, 0, \underset{\rho}{\mathsf{Id}}, 0, \cdots, 0) \in \prod_{\rho \in \mathsf{Irr}(G)} \mathcal{M}_{\deg \rho}(\mathbb{C})$$
  
to  $\pi_{\rho} = \frac{\deg \rho}{\#G} \sum_{g \in G} \overline{\chi_{\rho}(g)} e_g$  (Fourier inversion formula).

# Interpretation of the Wedderburn decomp. of $\mathbb{C}[G]$

# Proof.

For each  $\chi \in Irr(G)$ , let  $W_{\chi}$  be the irreducible representation of character  $\chi$ , and let  $e_{\chi} = \frac{\deg \chi}{\#G} \sum_{g \in G} \overline{\chi(g)} e_g \in Z(\mathbb{C}[G]).$ As  $\mathbb{C}[G]$ -modules,  $\prod \quad W_{\chi}^{\oplus n_{\chi}} \simeq \mathbb{C}[G] \simeq \quad \prod \quad \mathcal{M}_{\deg \chi}(\mathbb{C}) \simeq \quad \prod \quad S_{\chi}^{\oplus n_{\chi}}.$  $\chi \in Irr(G)$  $\chi \in \operatorname{Irr}(G)$  $\chi \in \operatorname{Irr}(G)$ Besides,  $e_{\chi}$  acts on  $W_{\psi}$  as Id if  $\psi = \chi$  and as 0 else, so  $\mathbb{C}[G] \xrightarrow{\sim} \mathbb{I} \qquad \mathcal{M}_{\deg \chi}(\mathbb{C})$  $\chi \in Irr(G)$  $x \quad \longmapsto \quad \stackrel{i}{t} (y \mapsto yx)_{|\prod_{\chi \in Irr(G)} W_{\chi}^{\oplus n_{\chi}}}$ takes  $e_{\chi}$  to  $(0, \dots, 0, \text{Id}, 0, \dots, 0)$ . In particular,  $e_{\chi}$  acts on  $S_{\psi}$ as Id if  $\psi = \chi$  and as 0 else, so  $S_{\psi} \simeq W_{\psi}$ .

# The character table

# Definition (Character table)

The <u>character table</u> of a finite group G is obtained by putting the values of the characters of Irr G on each conjugacy class of G.

It is a square matrix of size # Irr(G) = # Conj. classes in G.

| Example (Character table of $S_3$ ) |   |    |    |  |  |  |  |
|-------------------------------------|---|----|----|--|--|--|--|
| Rep. of class                       |   |    |    |  |  |  |  |
| # class                             | 1 | 3  | 2  |  |  |  |  |
| 1                                   | 1 | 1  | 1  |  |  |  |  |
| ε                                   | 1 | -1 | 1  |  |  |  |  |
| 4                                   | 2 | 0  | -1 |  |  |  |  |

# Principle

Let G be a group of "transformations". If  $g \in G$  is a "transformation" of "parameters"  $x, y, \cdots$ , then for all  $h \in G$ ,  $hgh^{-1}$  is the "transformation" of "parameters"  $h \cdot x, h \cdot y, \cdots$ .

#### Example

Let  $G = SO_3(\mathbb{R})$ . If  $g \in G$  is the rotation of axis  $\ell$  and angle  $\theta$ , then for all  $h \in G$ ,  $hgh^{-1}$  is the rotation of axis  $h(\ell)$  and angle  $\theta$ .

# The conjugacy principle

# Example

The conjugacy classes of  $G = D_8$ 



are  $\{\mathsf{Id}\}, \{\rho, \rho^3\}, \{\rho^2\}, \{\sigma, \sigma'\}, \{\tau, \tau'\}.$ 

# The conjugacy principle

# Example

Let  $G = S_n$  for some  $n \in \mathbb{N}$ . If  $\sigma = (i_1 \cdots i_k)(j_1 \cdots j_l) \cdots \in S_n$ , then for all  $\tau \in S_n$ ,  $\tau \sigma \tau^{-1} = (\tau(i_1) \cdots \tau(i_k)) (\tau(j_1) \cdots \tau(j_l)) \cdots$ .  $\rightsquigarrow \sigma, \sigma' \in S_n$  conjugate iff. same shape of cycle decomposition.

 $\rightsquigarrow$  Conjugacy classes of  $S_n \longleftrightarrow$  partitions  $n = n_1 + \cdots + n_r$ . For example, the conjugacy classes of  $S_5$  are:

$$\begin{cases} \mathsf{Id} \} & \longleftrightarrow & 5 = 1 + 1 + 1 + 1 + 1, \\ \{(**)\} & \longleftrightarrow & 5 = 2 + 1 + 1 + 1, \\ \{(***)\} & \longleftrightarrow & 5 = 3 + 1 + 1, \\ \{(****)\} & \longleftrightarrow & 5 = 3 + 1 + 1, \\ \{(*****)\} & \longleftrightarrow & 5 = 4 + 1, \\ \{(******)\} & \longleftrightarrow & 5 = 5, \\ \{(**)(**)\} & \longleftrightarrow & 5 = 2 + 2 + 1, \\ \{(***)(**)\} & \longleftrightarrow & 5 = 3 + 2. \end{cases}$$

# Conjugacy classes of $S_4 \leftrightarrow$ possible cycle decompositions $\sim 5$ classes, represented by Id, (12), (123), (1234), (12)(34).

# Rep. of class | Id (12) (123) (1234) (12)(34)

Conjugacy classes of  $S_4 \leftrightarrow$  possible cycle decompositions  $\sim 5$  classes, represented by Id, (12), (123), (1234), (12)(34).

| Rep. of class | ld | (12) | (123) | (1234) | (12)(34) |
|---------------|----|------|-------|--------|----------|
| # class       | 1  | 6    | 8     | 6      | 3        |
|               |    |      |       |        |          |

Conjugacy classes of  $S_4 \leftrightarrow$  possible cycle decompositions  $\sim$  5 classes, represented by Id, (12), (123), (1234), (12)(34).

 Rep. of class
 Id
 (12)
 (123)
 (1234)
 (12)(34)

 # class
 1
 6
 8
 6
 3

Conjugacy classes of  $S_4 \leftrightarrow$  possible cycle decompositions  $\sim$  5 classes, represented by Id, (12), (123), (1234), (12)(34).

→ 5 irreducible representations, of degree  $n_1 \le n_2 \le n_3 \le n_4 \le n_5$ .  $n_1 = 1$  because of 1.  $n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2 = \#S_4 = 24$ , so  $3 \le n_5 \le 4$ . If  $n_5 = 4$ , then  $n_2^2 + n_3^2 + n_4^2 = 24 - 1^2 - 4^2 = 7$ , impossible. So  $n_5 = 3$ ,  $n_2^2 + n_3^2 + n_4^2 = 24 - 1^2 - 3^2 = 14$ , whence  $3 \le n_4 \le 3$ , so  $n_2^2 + n_+^2 = 5$ .

| Rep. of class | ld | (12) | (123) | (1234) | (12)(34) |
|---------------|----|------|-------|--------|----------|
| # class       | 1  | 6    | 8     | 6      | 3        |
| 1             | 1  |      |       |        |          |
|               | 1  |      |       |        |          |
|               | 2  |      |       |        |          |
|               | 3  |      |       |        |          |
|               | 3  |      |       |        |          |

→ 5 irreducible representations, of degree  $n_1 \le n_2 \le n_3 \le n_4 \le n_5$ .  $n_1 = 1$  because of 1.  $n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2 = \#S_4 = 24$ , so  $3 \le n_5 \le 4$ . If  $n_5 = 4$ , then  $n_2^2 + n_3^2 + n_4^2 = 24 - 1^2 - 4^2 = 7$ , impossible. So  $n_5 = 3$ ,  $n_2^2 + n_3^2 + n_4^2 = 24 - 1^2 - 3^2 = 14$ , whence  $3 \le n_4 \le 3$ , so  $n_2^2 + n_3^2 = 5$ . Example:  $S_4$ 

| Rep. of class | ld | (12) | (123) | (1234) | (12)(34) |
|---------------|----|------|-------|--------|----------|
| # class       | 1  | 6    | 8     | 6      | 3        |
| 1             | 1  | 1    | 1     | 1      | 1        |
| ε             | 1  | -1   | 1     | -1     | 1        |
|               | 2  |      |       |        |          |
|               | 3  |      |       |        |          |
|               | 3  |      |       |        |          |
| Perm          | 4  | 2    | 1     | 0      | 0        |

Throw in some representations we can think of: 1,  $\varepsilon$ , the permutation representation Perm induced by  $S_4 \circlearrowright \{1, 2, 3, 4\}$ .

Example:  $S_4$ 

| Rep. of class | ld | (12) | (123) | (1234) | (12)(34) |
|---------------|----|------|-------|--------|----------|
| # class       | 1  | 6    | 8     | 6      | 3        |
| 1             | 1  | 1    | 1     | 1      | 1        |
| ε             | 1  | -1   | 1     | -1     | 1        |
|               | 2  |      |       |        |          |
|               | 3  |      |       |        |          |
|               | 3  |      |       |        |          |
| Perm          | 4  | 2    | 1     | 0      | 0        |

Throw in some representations we can think of:  $1, \varepsilon$ , the permutation representation Perm induced by  $S_4 \circlearrowright \{1, 2, 3, 4\}$ . We find (Perm | Perm) = 2 and (Perm | 1) = 1, so Perm  $\simeq 1 \oplus \chi$  with  $\chi$  irreducible of degree 3.



Throw in some representations we can think of:  $1, \varepsilon$ , the permutation representation Perm induced by  $S_4 \circlearrowright \{1, 2, 3, 4\}$ . We find (Perm | Perm) = 2 and (Perm | 1) = 1, so Perm  $\simeq 1 \oplus \chi$  with  $\chi$  irreducible of degree 3.

#### 

The character of Hom $(\chi, \varepsilon)$  is  $\chi \overline{\varepsilon} = \chi \varepsilon$ . Since  $(\chi \varepsilon | \chi \varepsilon) = (\chi | \chi) = 1$ , it is irreducible.

# Rep. of classId(12)(123)(1234)(12)(34)# class16863 $\blacksquare$ 11111 $\varepsilon$ 1-11-112 $\chi$ 310-1 $\chi \varepsilon$ 3-101-1

The character of Hom $(\chi, \varepsilon)$  is  $\chi \overline{\varepsilon} = \chi \varepsilon$ . Since  $(\chi \varepsilon | \chi \varepsilon) = (\chi | \chi) = 1$ , it is irreducible.

Example:  $S_4$ 



The character of Hom $(\chi, \chi)$  is  $\chi \overline{\chi} = \chi^2$ . We find  $(\chi^2 | \chi^2) = 4$ ,  $(\chi^2 | \mathbb{1}) = 1$ ,  $(\chi^2 | \chi) = 1$ ,  $(\chi^2 | \chi\varepsilon) = 1$ ,  $\rightsquigarrow \chi^2 = \mathbb{1} + \chi + \chi\varepsilon + \psi$  where  $\psi$  is the remaining character.

Alternatively, the regular representation  $\mathbb{C}[S_4]$  has character R given by R(Id) = 24, R(g) = 0 if  $g \neq Id$ , and decomposes as  $R = \mathbb{1} + \varepsilon + 2\psi + 3\chi + 3\chi\varepsilon$ .

Example:  $S_4$ 

| Rep. of class   | ld | (12) | (123) | (1234) | (12)(34) |
|-----------------|----|------|-------|--------|----------|
| # class         | 1  | 6    | 8     | 6      | 3        |
| 1               | 1  | 1    | 1     | 1      | 1        |
| ε               | 1  | -1   | 1     | -1     | 1        |
| $\psi$          | 2  | 0    | -1    | 0      | 2        |
| $\chi$          | 3  | 1    | 0     | -1     | $^{-1}$  |
| $\chiarepsilon$ | 3  | -1   | 0     | 1      | -1       |

The character of Hom $(\chi, \chi)$  is  $\chi \overline{\chi} = \chi^2$ . We find  $(\chi^2 | \chi^2) = 4$ ,  $(\chi^2 | \mathbb{1}) = 1$ ,  $(\chi^2 | \chi) = 1$ ,  $(\chi^2 | \chi\varepsilon) = 1$ ,  $\rightsquigarrow \chi^2 = \mathbb{1} + \chi + \chi\varepsilon + \psi$  where  $\psi$  is the remaining character.

Alternatively, the regular representation  $\mathbb{C}[S_4]$  has character R given by R(Id) = 24, R(g) = 0 if  $g \neq Id$ , and decomposes as  $R = \mathbb{1} + \varepsilon + 2\psi + 3\chi + 3\chi\varepsilon$ .

# Normal subgroups on the character table

Theorem (Normal subgroups on character table)

For each  $\chi \in Irr G$ , let  $N_{\chi} = \{g \in G \mid \chi(g) = \deg \chi\}$ 

Then the  $N_{\chi}$  are normal subgroups of G. Conversely, every normal subgroup of G is an intersection of some of the  $N_{\chi}$ .

#### Proof.

Recall that if  $\rho$  has character  $\chi$ , then  $g \in \operatorname{Ker} \rho \Leftrightarrow \chi(g) = \operatorname{deg} \chi$ . Thus  $N_{\chi} = \operatorname{Ker} \rho \triangleleft G$ . Conversely, let  $N \triangleleft G$ . The regular representation  $\mathbb{C}[G/N]$  is a faithful representation of G/N; we may view it as a representation R of G via  $G \longrightarrow G/N$  which thus satisfies Ker R = N. Therefore, if  $R \simeq \bigoplus \rho^{\oplus n_{\rho}}$  with each  $\rho$  irreducible and  $n_{\rho} \ge 1$ , then  $N = \bigcap \operatorname{Ker} \rho = \bigcap N_{\chi_{\rho}}$ .

# Normal subgroups on the character table

Theorem (Normal subgroups on character table)

For each  $\chi \in \mathsf{Irr}\ {\sf G}$ , let  ${\sf N}_\chi = \{ {\sf g} \in {\sf G} \ | \chi({\sf g}) = \deg \chi \}$ 

Then the  $N_{\chi}$  are normal subgroups of G. Conversely, every normal subgroup of G is an intersection of some of the  $N_{\chi}$ .

Theorem (Derived subgroup on character table)

The derived subgroup of G is 
$$D(G) = \bigcap_{\deg \chi = 1} N_{\chi}$$

#### Proof.

As  $\mathsf{GL}(1,\mathbb{C}) = \mathbb{C}^{\times}$  is Abelian,  $\mathsf{Irr}(\mathcal{G}/\mathcal{D}(\mathcal{G})) = \{\chi \in \mathsf{Irr} \ \mathcal{G} \mid \deg \chi = 1\}.$ 

# Normal subgroups on the character table

Theorem (Normal subgroups on character table)

For each  $\chi \in Irr G$ , let  $N_{\chi} = \{g \in G \mid \chi(g) = \deg \chi\}$ 

Then the  $N_{\chi}$  are normal subgroups of G. Conversely, every normal subgroup of G is an intersection of some of the  $N_{\chi}$ .

Theorem (Derived subgroup on character table)

The derived subgroup of G is 
$$D(G) = \bigcap_{\deg \chi = 1} N_{\chi}$$

# Corollary

We can see the normal subgroups and the derived subgroup of *G* on its character table. In particular, we can see whether *G* is simple and whether it is perfect.

# Example: $S_4$

| Rep. of class      | ld | (12) | (123) | (1234) | (12)(34) |
|--------------------|----|------|-------|--------|----------|
| # class            | 1  | 6    | 8     | 6      | 3        |
| 1                  | 1  | 1    | 1     | 1      | 1        |
| ε                  | 1  | -1   | 1     | -1     | 1        |
| $\psi$             | 2  | 0    | -1    | 0      | 2        |
| $\chi$             | 3  | 1    | 0     | -1     | -1       |
| $\chi \varepsilon$ | 3  | -1   | 0     | 1      | -1       |

We find the normal subgroups  $N_{\varepsilon} = A_4$  and  $N_{\psi} = V_4$ . Since  $N_{\varepsilon} \supset N_{\psi}$ , these are all the non-trivial normal subgroups of  $S_4$ . Anyway,  $S_4$  is not a simple group.

The derived subgroup is

$$D(S_4) = igcap_{\deg 
ho = 1} \operatorname{\mathsf{Ker}} 
ho = N_arepsilon = A_4.$$

In particular,  $S_4$  is not perfect.

# The second orthogonality relations & extra results

# Second orthogonality of characters

Theorem (Second orthogonality of characters)

Let  $g, h \in G$ , and let  $C_h \subset G$  be the conjugacy class of h. Then  $\sum_{\chi \in Irr \ G} \chi(g) \overline{\chi(h)} = \begin{cases} \#G/\#C_h \text{ if } g \in C_h, \\ 0 \text{ else.} \end{cases}$ 

#### Proof.

 $f_h: G \longrightarrow \mathbb{C}$  defined by f(g) = 1 if  $g \in C_h$ , f(g) = 0 else, is a class function. As Irr G is an orthonormal basis,

$$f_{h} = \sum_{\chi \in \operatorname{Irr} G} (f_{h} \mid \chi) \chi,$$
  

$$(f_{h} \mid \chi) = \frac{1}{\#G} \sum_{g \in G} f_{h}(g) \overline{\chi(g)} = \frac{\#C_{h}}{\#G} \overline{\chi(h)}$$
  

$$\rightsquigarrow f_{h}(g) = \frac{\#C_{h}}{\#G} \sum_{\chi \in \operatorname{Irr} G} \overline{\chi(h)} \chi(g).$$

# Second orthogonality of characters

# Theorem (Second orthogonality of characters)

Let  $g, h \in G$ , and let  $C_h \subset G$  be the conjugacy class of h. Then  $\sum_{\chi \in Irr \ G} \chi(g) \overline{\chi(h)} = \begin{cases} \#G/\#C_h \text{ if } g \in C_h, \\ 0 \text{ else.} \end{cases}$ 

#### Remark

$$\#G/\#C_h = \#\{g \in G \mid gh = hg\}.$$

# Corollary

$$\sum_{\gamma \in \operatorname{Irr} G} (\operatorname{deg} \chi) \chi(g) = \begin{cases} \#G \text{ if } g = 1_G, \\ 0 \text{ else.} \end{cases}$$

.

# Second orthogonality of characters

Theorem (Second orthogonality of characters)

Let  $g, h \in G$ , and let  $C_h \subset G$  be the conjugacy class of h. Then  $\sum_{\chi \in Irr \ G} \chi(g) \overline{\chi(h)} = \begin{cases} \#G/\#C_h \text{ if } g \in C_h, \\ 0 \text{ else.} \end{cases}$ 

Example (Finding a character when all the others are known)

We can easily determine the missing character  $\psi$  of  $S_4$ :

| Rep. of class   | ld | (12) | (123) | (1234) | (12)(34) |
|-----------------|----|------|-------|--------|----------|
| # class         | 1  | 6    | 8     | 6      | 3        |
| 1               | 1  | 1    | 1     | 1      | 1        |
| ε               | 1  | -1   | 1     | -1     | 1        |
| $\psi$          |    |      |       |        |          |
| $\chi$          | 3  | 1    | 0     | -1     | -1       |
| $\chiarepsilon$ | 3  | -1   | 0     | 1      | -1       |

# Theorem (Irreducible degrees divide #G)

Let G be a finite group. Then deg  $\chi \mid \#G$  for all  $\chi \in Irr(G)$ .

## Proof.

Admitted.

### Example

The degrees of the irreducible representations of  $G = S_4$  are 1, 1, 2, 3, 3, which all divide #G = 24.

# Burnside's theorem (Non examinable)

# Theorem (Burnside)

Let G be a finite group. If #G has at most 2 distinct prime factors, then G is solvable.

# Proof.

Admitted, but the proof relies on representation theory!

# Corollary

Let G be a finite group. If G is simple and non-Abelian, then #G has at least 3 distinct prime factors.

# Example

The smallest non-Abelian simple group is  $A_5$ , whose order is

$$60=2^2\cdot 3\cdot 5.$$

The next one has order  $168 = 2^3 \cdot 3 \cdot 7$ .