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Question 1 Subgroups for appetiser

Sketch a diagram showing all the subgroups of G when:

1. G = (Z/2Z)× (Z/2Z),

2. G = V4 = {Id, (12)(34), (13)(24), (14)(23)} < S4,

3. G = S3,

4. G = Z/nZ, for n up to 12.

Solution 1

1. G has order 4, so any nontrivial subgroup must have order 2. A group of order 2 must

be of the form {1G, g} where g2 = 1G but g 6= 1G, i.e. g has order exactly 2; conversely,

if g has order exactly 2, then {1G, g} is a subgroup of G. Since 1G = (0, 0) and since

all the other elements of G have order 2:

{(0, 0)}
2

2
2

{(0, 0), (1, 0)} {(0, 0), (1, 1)} {(0, 0), (0, 1)}

G
2

2
2

2. Same logic as for (Z/2Z)× (Z/2Z) (and in fact these two groups are isomorphic).

{Id}
2

2
2

{Id, (12)(34)} {Id, (13)(24)} {Id, (14)(23)}

G
2

2
2

3. This time #G = 6 so the possible orders for subgroups are 2 and 3. As before, subgroups

of order 2 correspond to elements of order 2, i.e. transpositions in this case. Similarly,

if H is a subgroup of order 3 and Id 6= g ∈ H, then by Lagrange g must have order 3
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so H = {Id, g, g2 = g−1}; and conversely any element of order 3 (i.e. 3-cycle) gives us

a subgroup of order 3. So

{Id}
2 2

2

3{Id, (12)} {Id, (13)} {Id, (23)}

{Id, (123), (132)} = A3

G

3 3
3

2

4. Subgroups of cyclic groups are also cyclic. Besides, for each d | n we have the subgroup

dZ/nZ ' Z/n
d
Z, and that’s all the subgroups.

For n = 1, G is the trivial group.

For n = 2, 3, 5, 7, 11, n is prime, so no nontrivial subgroup:

{0} ' nZ/nZ
n

Z/nZ

The remaining cases are a little more interesting:

{0}

2

2Z/4Z ' Z/2Z

2

Z/4Z

{0}
2

33Z/6Z ' Z/2Z

3
2Z/6Z ' Z/3Z

2

Z/6Z

{0}

2

4Z/8Z ' Z/2Z

2

2Z/8Z ' Z/4Z

2

Z/8Z
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{0}

3

3Z/9Z ' Z/3Z

3

Z/9Z

{0}
2 3

6Z/12Z ' Z/2Z

2
3

4Z/12Z ' Z/3Z

2

3Z/12Z ' Z/4Z

3

2Z/12Z ' Z/6Z

2

Z/12Z

Question 2 Bookwork

Let K ⊂ L be a finite extension, and let Ω ⊃ K be algebraically closed. Which inequalities

do we always have between [L : K], # AutK(L), # HomK(L,Ω)? When are they equalities?

State equivalent conditions.

Solution 2

We always have

# AutK(L) ≤ # HomK(L,Ω) ≤ [L : K].

The left inequality is an equality iff. L is normal over K, which means that there exists

F (x) ∈ K[x] such that L is (K-isomorphic to) the splitting field of F over K. An equivalent

characterisation is that any irreducible P (x) ∈ K[x] having one root in L must split completely

over L.

The right inequality is an equality iff. L is a separable extension of K, which means that

the minpoly over K of any element of L is separable.

Question 3 Correspondence in degree 3

Let K be a field, and F (x) ∈ K[x] be separable and of degree 3. Denote its 3 roots in its

splitting field L by α1, α2, α3.

1. What are the possibilities for GalK(F )? How can you tell them apart?
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2. For each of the cases found in the previous question, sketch the diagram showing all

the fields K ⊂ E ⊂ L and identifying these fields. In particular, locate K(α1), K(α2),

K(α3), K(α1, α2), etc.

3. In which of the cases above is the stem field of F isomorphic to its splitting field?

(Warning: there is a catch in this question.)

Solution 3

Some general remarks first. In any case, GalK(F ) is a subgroup of S3 acting on the roots

of F ; the only such subgroups are S3, A3, {Id×S2}, and {Id}. Besides, we know that

α1 + α2 + α3 ∈ K by Vieta’s formulas (it is the negative of the coefficient of x2 in F ), so

α3 = (α1 + α2 + α3)− α1 − α2 ∈ K(α1, α2; as a result, we always have

K(α1, α2) = K(α1, α2, α3).

We can also recover this fact by Galois theory: if σ ∈ Gal(K(α1, α2, α3)/K(α1, α2)), then

σ ∈ §3 fixes 1 and 2, so it must be the identity. Therefore K(α1, α2, α3) and K(α1, α2) both

correspond to the same subgroup, namely {Id}, so they are the same field.

Similarly, we have

K(α1, α3) = K(α2, α3) = K(α1, α2, α3).

Let us now examine the possible cases.

Suppose first that F is irreducible over K, and that discF is not a square in K. Then

GalK(F ) is a transitive subgroup not contained in A3, so it is S3. To find the intermediate

fields, we start with the subgroups:
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{Id}
2

2
2

3{Id, (12)}

3

{Id, (23)}

3

{Id, (13)}

3 A3

2

S3

Since {Id, (23)} is the stabiliser of α1, the corresponding field is K(α1), which is indeed an

extension of K of degree 3 since F , being irreducible, is the minpoly of α1. Similarly for

K(α2) and K(α3). Finally, let E correspond to A3; then the extension E ⊂ K(α1, α2, α3) is

Galois of Galois group A3, so discF is a square in E. Besides [E : K] = [S3 : A3] = 2 and
√

discF 6∈ K by assumption, so E = K(
√

discF ). We thus get

K(α1, α2, α3)
2

2
2

3K(α3)

3

K(α2)

3

K(α1)

3 K(
√

discF )

2

K

In particular, the stem fields K(α1), K(α2), K(α3), which are all isomorphic (to K[x]/F (x),

that’s a theorem) but distinct, are smaller than the splitting field K(α1, α2, α3) in this case.

Suppose now that F is irreducible and discF is a square in K. Then GalK(F ) = A3

since it is transitive and contained in A3. Since A3 ' Z/3Z has prime order, it cannot have

any nontrivial subgroup, so by the Galois correspondence the only intermediate fields are

K(α1, α2, α3)

#A3=3

K.
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Since F is irreducible over K, it has no root in K, so α1 6∈ K, so K(α1) ) K, so

K(α1) = K(α1, α2, α3).

We can also see this by noting that the corresponding subgroup is the stabiliser of 1 in A3,

which is reduced to {Id}. Similarly

K(α2) = K(α3) = K(α1, α2, α3).

So this time, the stem fields K(α1), K(α2), K(α3) are all the same (not only up to isomor-

phism), and agree with the splitting field K(α1, α2, α3).

Suppose now that F factors as 1 + 2 over K, and let α1 be the root of F in K. Then

F (x) = (x − α1)G(x), where G(x) = (x − α2)(x − α3) is irreducible over K. In particular

GalK(F ) = Id×GalK(G) = Id×S2. Again this does not have any nontrivial subgroups, so

the only intermediate fields are

K(α1, α2, α3)

2

K.

We have K(α1) = K, but K(α2) = K(α3) = K(α1, α2, α3).

Finally, if F factors completely over K, then all the αi are in K, so the only intermediate

field is

K = K(α1, α2, α3)

which is of course also K(αi) for any i. This checks out with Galois theory, since in this case

GalK(F ) = {Id} has only one subgroup (including itself and{Id}, which is the same thing in

this case).

In the last two cases, there is no stem field anymore since F is not irreducible (that was

the catch).
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Question 4 The fundamental theorem of algebra

The goal of this Question is to use Galois theory to prove by contradiction that C is algebraically

closed.

You may use without proof the following facts:

• If F (x) ∈ R[x] is a polynomial of odd degree, then F (x) has at least one root in R.

• If G(x) ∈ C[x] is a polynomial of degree 2, then G(x) has at least one root in C.

• If G is a finite group of cardinal #G = 2ab with b odd, then G has at least one subgroup

of cardinal 2a.

• If H is a finite group whose cardinal #H = 2a is a power of 2, then for each integer

0 6 n 6 a, H has at least one subgroup of cardinal 2n.

1. Prove that if C were not algebraically closed, then there would exist a finite nontrivial

extension K of C (that is to say K ) C and 1 < [K : C] <∞).

2. Deduce that there would exist a finite nontrivial extension C ( L such that the extension

R ( L is Galois.

3. Prove that [L : R] would necessarily be a power of 2.

4. Prove that there would exist an intermediate field C ( F ⊆ L such that [F : C] = 2.

5. Derive a contradiction.

Note: the admitted facts at the top of the Question follow respectively from elementary

calculus (limits at ±∞ and then intermediate value theorem), the formula to solve quadratic

equations and the fact that every element of C admits a square root in C, Sylow’s theorem,

and Sylow’s theorem again.

Solution 4

1. If C is not algebraically closed, then there exists an irreducible polynomial P (x) ∈ C[x]

of degree d > 2. We may then take K to be the stem field C[x]/(P ), which satisfies

[K : C] = d.
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2. The tower law ensures that [K : R] = [K : C][C : R] = 2d, so K is a finite extension

of R. Its normal closure L (over R) is thus also a finite extension of R, which is a

nontrivial extension of C since it contains K ) C.

3. Let G = Gal(L/R). This is a finite group of order [L : R], which we may factor as 2ab

with b odd. By the admitted facts above, there exists a subgroup H ⊂ G of order 2a

and thus of index b. The Galois correspondence attaches to it an intermediate extension

E = LH such that [E : R] = b.

We claim that E = R. Indeed, let e ∈ E. Then e is algebraic over R since [E : R] =

b < ∞, and the degree of its minimal polynomial over R is [R(e) : R], which divides

[E : R] = b by the tower law, and is therefore odd. This polynomial must thus have a

root in R, which contradicts its irreducibility unless it has degree 1; but this means that

e ∈ R.

In conclusion, b = [E : R] = 1, so # Gal(L/R) = 2ab = 2a.

4. We are in the following situation: R ( C ( L, with L Galois of degree 2a over R.

In particular, L is also Galois over C, of degree 2a−1 by the tower law (in particular

a > 2); therefore Gal(L/C) makes sense and is a group of cardinal 2a−1. By the above,

it admits a subgroup of order 2a−2, and thus of index 2. The corresponding field F

satisfies R ( C ( F ( L and [F : C] = 2.

5. Let f ∈ F . As [F : C] = 2 < ∞, f is algebraic over C, of degree 1 or 2. If that

degree were 2, then its minimal polynomial over C would be an irreducible polynomial

of degree 2 over C, and we have agreed that such a thing does not exist. Therefore this

degree is 1, so f ∈ C.

This proves that F = C, in contradiction with [F : C] = 2.
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Question 5 Galois group computations

Determine the Galois group over Q of the polynomials below, and say if they are solvable by

radicals over Q.

1. x3 − x2 − x− 2,

2. x3 − 3x− 1,

3. x3 − 7,

4. x5 + 21x2 + 35x+ 420,

5. x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

Solution 5

1. Looking for rational roots, we find the factorisation f = (x − 2)(x2 + x + 1). The

second factor has ∆ = −3 < 0 so is irreducible over R and hence over Q. As a result,

the polynomial is separable and has Galois group {Id} × S2. This is Abelian, hence

solvable, so this polynomial is solvable by radicals.

2. No rational roots, so irreducible (since degree 3). disc = 81 = 92 so A3. This group is

Abelian, hence solvable, so this polynomial is solvable by radicals.

3. No rational roots, so irreducible (since degree 3). disc = −33 · 72 is clearly not a square

in Q, so S3. This group is solvable because Id /A3 / S3 has Abelian factors, so this

polynomial is solvable by radicals.

Note: since S3 is solvable, any subgroup is also solvable, so any equation of degree 3 is

solvable by radicals.

4. Eisenstein at 7 so irreducible, so transitive Galois group. Mod 2, factors as

x5 + x2 + x = x(x4 + x+ 1).

The second factor is irreducible: if not, it would have a factor of degree 1 or 2, but

gcd(x4+x+1, x2
2−1) = gcd(x4+x+1, x4−1−(x4+x+1)) = gcd(x4+x+1, x) = 1
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so it has no irreducible factor of degree dividing 2. So we have a 4-cycle.

Mod 3, factors as

x5 − x = (x− 1)x(x+ 1)(x2 + 1)

with x2 + 1 irreducible mod 3 (degree ≤ 3, no roots), so we have a 2-cycle. Conclusion

: S5. We know that this is not a solvable group, so this polynomial is not solvable by

radicals.

5. This is the cyclotomic polynomial Φ11(x), so Galois group (Z/11Z)×. This is Abelian,

hence solvable, so this polynomial is solvable by radicals even though it has degree ≥ 5

(indeed, the roots are 11
√

1...)

Question 6 A cosine formula

Let c = cos(2π/17).

1. Prove that the group (Z/17Z)× is cyclic, and find a generator for it.

2. Prove that c is algebraic over Q.

3. Determine the conjugates of c over Q, and its degree as an algebraic number over Q.

4. Explain how one could in principle use Galois theory (and a calculator / computer) to

find an explicit formula for c.

Solution 6

1. This group is cyclic (of order 16 of course) because 17 is prime. Let us look for a

generator. 2 does not work because 24 = 16 ≡ −1 mod 17, so 28 = 1, so 2 has order

8 < 16. However 3 is a generator since

32 = 9, 34 = 92 = 81 ≡ −4, 38 ≡ (−4)2 ≡ −1.

2. Let ζ = exp(2πi/17), a primitive 17-th root of 1. Since ζ is clearly algebraic over Q

(as a root of x17 − 1 / even better: of Φ17(x)), Q(ζ) is a finite extension of Q. As a
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result, it is an algebraic extension of Q, which means that all its elements are algebraic

over Q. This applies in particular to c = ζ+ζ−1

2
.

3. Let ζ as above, and L = Q(ζ). We know that L is Galois over Q; since c ∈ L, this

implies that the conjugates of c are the σ(c) for σ ∈ Gal(L/Q). It remains to determine

them explicitly.

We know that Gal(L/Q) ' (Z/17Z)×. By the first question, Gal(L/Q) is cyclic of

order 16, and generated by σ3 : ζ 7→ ζ3.

In particular, the conjugates of c are its orbit under σ3. Using c = ζ+ζ−1

2
(and some

patience), we compute that

σ3(c) =
ζ3 + ζ−3

2
= cos(6π/17),

σ2
3(c) =

ζ9 + ζ−9

2
= cos(18π/17) =

ζ−8 + ζ8

2
= cos(19π/17),

σ3
3(c) =

ζ27 + ζ−27

2
=
ζ−7 + ζ7

2
= cos(14π/17),

σ4
3(c) =

ζ−21 + ζ21

2
=
ζ−4 + ζ4

2
= cos(8π/17),

σ5
3(c) =

ζ−12 + ζ12

2
=
ζ5 + ζ−5

2
= cos(10π/17),

σ6
3(c) =

ζ15 + ζ−15

2
=
ζ−2 + ζ2

2
= cos(4π/17),

σ7
3(c) =

ζ−6 + ζ6

2
= cos(12π/17),

σ8
3(c) =

ζ−18 + ζ18

2
=
ζ + ζ−1

2
= cos(2π/17) = c,

so we stop here (note that since 38 ≡ −1, we already knew that σ8
3 would fix c, so the

orbit would have length 6 8): the conjugates of c are

c = cos(2π/17), cos(6π/17), cos(18π/17), cos(14π/17),

cos(8π/17), cos(10π/17), cos(4π/17), cos(12π/17).

Using a calculator, one checks that they are all distinct. Since they are the roots of the

minimal polynomial of c, we see that the degree of c as an algebraic number is 8.
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4. Since Gal(L/Q) is cyclic of order 16, it has precisely one subgroup of the each of

the following orders: 1, 2, 4, 8, 16 (and these all all its subgroups). The Galois

correspondence show that there is a succession of extensions of degree 2 starting at Q

an culminating at L. This are all the subfields of L (since these were all the subgroups).

The field Q(c) must be one of them; since this field has degree 8 over Q by the above,

it is actually the second-to-top one (the top one being L).

Starting with Q, we can now find an explicit generator for each subfield by expressing

a generator in terms of ζ, finding its other conjugate over the subfield just below it

by using the Galois action (there will be only one other conjugate since each extension

step is of degree 2), deducing its minimal polynomial over that subfield, and solving it

(which we can since it will have degree 2).

For instance, for the first step, we see that α =
∑7

k=0 σ
2k
3 (ζ) lies in the extension of

degree 2 over Q since it is fixed by σ2
3 (which generates the corresponding subgroup of

order 8), and has α′ = σ3(α) =
∑7

k=0 σ
2k+1
3 (ζ) as a conjugate. Sine one checks with a

calculator that α′ 6= α, we have that α generates the extension of degree 2 (and so does

α′), and satisfies its minimal polynomial A(x) = (x − α)(x − α′) ∈ Q[x]. Expressing

it in terms of ζ (which is really painful without a computer) yields A(x) = x2 + x− 4,

which shows that α, α′ = −1±
√
17

2
, so this extension is actually Q(

√
17).

Next, we find similarly that β =
∑3

k=0 σ
4k
3 (ζ) lies in the extension of degree 4, and

generates it since it is distinct from its conjugate β′ = σ3(β) over Q(α); and since it is

a root of B(x) = (x− β)(x− β′) which must lie in Q(α)[x], we can express it in terms

of α.

With a lot of courage (or in my case, a good computer program), we find that B(x) =

x2 − α + 1 whence β, β′ = α±
√
α2−4
2

. Continuing this way, we finally arrive to the

fantastically horrible formula

cos
2π

17
=
−1 +

√
17 +

√
2
√

17−
√

17 + 2

√
17 + 3

√
17−

√
170 + 38

√
17

16
.
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Question 7 Extensions of finite field are Galois

Let p ∈ N be prime, n ∈ N, and q = pn.

1. Give two proofs of the fact that the extension Fp ⊂ Fq is Galois: one by viewing Fq as

a splitting field, and the other by considering the order of Frob ∈ Aut(Fq).

2. What does the Galois correspondence tell us for Fp ⊂ Fq?

3. Generalise to an arbitrary extension of finite fields Fq ⊂ Fq′ .

Solution 7

1. Recall that

Fq = {x ∈ Fp | xq = x}.

In particular, Fq is the splitting field over Fp of F (x) = xq − x, so it is normal over Fp;

besides, F ′ = −1 has no common factor with F , so F is separable, so Fq is separable

over Fp (we may also argue that Fp, being finite, is perfect).

Second proof: Frob : x 7→ xp ∈ AutFp(Fq). Its iterates are Frobk : x 7→ xp
k
, so if Frob

has order o, then every element of Fq is a root of xp
o−x, whence po > q by considering

the degree, i.e. o > n. SO Frob has at least n distinct iterates in AutFp(Fq), so the

inequality

# AutFp(Fq) ≤ [Fq : Fp] = n

is an equality, so the extension is Galois (cf. question 1). Besides, this proof also show

that the Galois group is cyclic and generated by Frob.

2. The subgroups of

Gal(Fq/Fp) = 〈Frob〉 ' Z/nZ

are the

〈Frobd〉 ' dZ/nZ

for d | n since the former is cyclic by the above. For each d, the corresponding subfield

is

F〈Frobd〉q = {x ∈ Fq | xp
d

= x} = Fpd
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as predicted by the classification of finite fields.

3. By the same arguments as the above, this extension is Galois, with cyclic Galois group

generated by Frobq : x 7→ xq (since it must induce the identity on Fq). The Galois

correspondence then shows that the intermediate fields are the Fqd for d | m, where

q′ = qm, as predicted by the classification of finite fields.
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