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Email your answers to mascotn@tcd.ie by Monday 22nd November, 4PM.

Exercise 1 A polynomial with Galois group A4 (100 pts)

Let F (x) = x4−2x3+2x2+2 ∈ Q[x]. We denote the roots of F (x) in C by α1, α2, α3,
and α4.

In this exercise, you may use without proof the following facts:

• The discriminant of f is ∆f = 3136 = 26 · 72.

• The transitive subgroups of the symmetric group S4 are

– S4 itself,

– the alternating group A4,

– the dihedral group D8 of symmetries of the square acting on the vertices
of the square,

– the Klein group V4 = {Id, (12)(34), (13)(24), (14)(23)} ' (Z/2Z)×(Z/2Z),

– and the cyclic group Z/4Z.

1. (15 pts) Prove that F (x) is separable and irreducible over Q.

2. (20 pts) Prove that F (x) factors mod 3 as a linear factor times an irreducible
factor of degree 3.

3. (25 pts) Prove that the Galois group of F (x) is A4.

4. (20 pts) Prove that Q(α1, α2, α3, α4) = Q(α1, α2).

5. (20 pts) Determine the degrees of the irreducible factors of F (x) over Q(α1).

Solution 1

1. This follows from the fact that f is Eisenstein at 2.

2. First of all, f has a root mod 3, namely x = 1 mod 3. In particular, F (x)/(x−
1) ∈ F3[x]; we compute that actually F (x) ≡ (x− 1)(x3 − x2 + x+ 1) mod 3.
Besides g(x) = x3 − x2 + x + 1 has no roots in F3, so it is irreducible since it
has degree 3.
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3. Let G = GalQ(f). Then G is a subgroup of S4. By the first question, G
is transitive, so it is one of the groups on the list given at the beginning of
the exercise. By the previous question, G contains a 3-cycle; this eliminates
all possibilities except S4 and A4. Finally, since ∆f is a square in Q, G is
contained in A4.

4. Let L = Q(α1, α2, α3, α4) and E = Q(α1, α2). We know that L is Galois
over Q, with Galois group A4. The subgroup H corresponding to E is the
subgroup of A4 consisting of permutations that leave both α1 and α2 fixed.
In S4, the only such permutations are Id and (34), but (34) 6∈ S4, so H = {Id}.
Therefore E = L.

5. Let L = Q(α1, α2, α3, α4) above, and E ′ = Q(α1). Clearly, we have the (pos-
sibly incomplete) factorisation F (x) = (x − α1)h(x) over E ′, where h(x) =
(x−α2)(x−α3)(x−α4) = F (x)/(x−α1) ∈ E ′[x]. The subgroup H ′ correspond-
ing to E ′ is the stabiliser of α1. In particular, it contains the 3-cycle σ = (234).
Since σ ∈ H ′ = Gal(L/E ′) permutes the roots of h(x) transitively, h(x) is ir-
reducible over E ′. We thus have two irreducible factors, one of degree 1 and
one of degree 3.

This was the only mandatory exercise, that you must submit before the
deadline. The following exercise is not mandatory; it are not worth any
points, and you do not have to submit it. However, I highly recommend
that you try to solve them for practice, and you are welcome to email me
if you have questions about it. The solutions will be made available with
the solution to the mandatory exercise.

Exercise 2 More Galois groups over Q
Prove that the following polynomials have no repeated root in C, and determine
their Galois group over Q. Warning: Some polynomials may be reducible!

1. F1(x) = x3 − 4x+ 6,

2. F2(x) = x3 − 7x+ 6,

3. F3(x) = x3 − 21x− 28,

4. F4(x) = x3 − x2 + x− 1,

5. F5(x) = x5 − 6x + 3, using without proof the fact that this polynomial has
exactly 3 real roots.
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Solution 2

1. Since disc(F1) = −4 · (−4)3− 27 · 62 = −716 is nonzero, F1(x) has no repeated
root, and since −716 < 0 is clearly not a square in Q, GalQ(F1) 6⊂ A3. Besides
F1(x) is Eisenstein at p = 2, so it is irreducible over Q, so its Galois group is
either S3 or A3. Conclusion:

GalQ(F1) = S3.

2. The possible rational roots of F2(x) are ±1,±2,±3,±6. Checking these, we
find that 1, 2, and −3 are roots of F2(x). Since F2(x) = (x− 1)(x− 2)(x+ 3)
splits completely over Q,

GalQ(F2) = {Id}.

3. Since disc(F3) = −4 · (−21)3− 27 · (−28)2 = 15876 = 1262 is a nonzero square
in Q, F3(x) has no repeated root, and its Galois group is contained in A3.
Besides F3(x) is Eisenstein at p = 7, so it is irreducible over Q, so its Galois
group is either S3 or A3. Conclusion:

GalQ(F3) = A3 ' Z/3Z.

4. The possible roots of F4(x) are ±1. Of these, we check that only +1 is a root.
Dividing F4(x) by (x− 1) reveals that F4(x) = (x− 1)(x2 + 1); in particular,
F4(x) has no repeated root. Since the factor x2 + 1 is clearly irreducible over
Q, we get

GalQ(F4) = Z/2Z

(generated by complex conjugation swapping i and −i).

5. Thanks to the formula

disc(xn + bx+ c) = (−1)n(n−1)/2
(
(1− n)n−1bn + nncn−1

)
,

we compute that

disc(F5) = (−1)5·4/2
(
(−4)4 · (−6)5 + 55 · 34

)
= −1737531.

Since disc(F5) 6= 0, F5 has no repeated root, so it has 3 real roots and 2
complex-conjugate nonreal roots. We may also say that since disc(F5) < 0, F5

has an odd number of complex conjugate pairs of roots, which forces it to have
2 complex roots and 3 real roots, but this was not required by the question.
Finally, since disc(F5) < 0 is not a square in Q, GalQ(F5) 6⊂ A5, but this does
not help us identify GalQ(F5).

Mod 2, we have F5(x) ≡ x5 − 1, which has x = 1 s a root. Dividing by x− 1
shows that F5(x) ≡ (x − 1)G(x), where G(x) = x4 + x3 + x2 + x + 1. We
check that G(x) has no root in F2, so it has no linear factor. Besides, we
compute that gcd(G, x4− x) = 1 (we could see this directly: gcd(G, x4− x) =
gcd(G − (x4 − x), x4 − x) = gcd(x3 + x2 + 1, x4 − x) = 1 since x3 + x2 + 1,
having degree 3 and no root in F2, is irreducible, and thus has no factor of
degree 1 or 2), so G has no factor of degree 2 either (alternatively we know
that the only irreducible polynomial of degree 2 over F2 is x2 + x + 1, and
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G 6= (x2 + x + 1)2 = x4 + x2 + 1). As a conclusion, G is irreducible, so the
complete factorisation of F5 mod 2 is

(x− 1)(x4 + x3 + x2 + x+ 1),

which shows that GalQ(F5) contains a 4-cycle (which confirms that GalQ(F5) 6⊂
A5).

Besides, complex conjugation is an element of GalQ(F5) which fixes the 3 real
roots and swaps the 2 complex roots, so it is a 2-cycle.

Finally, F5 is irreducible over Q as it is Eisenstein at p = 3, so GalQ(F5) is a
transitive subgroup of S5.

Since any transitive subgroup of Sn containing an (n− 1)-cycle and a 2-cycle
must be the whole of Sn, we conclude that

GalQ(F5) = S5.
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