Galois theory — Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU34101/index.html

Version: October 31, 2021

Exercise 1 The fifth cyclotomic field

In this exercise, we consider the primitive 5th root $\zeta = e^{2\pi i/5}$, and we set $L = \mathbb{Q}(\zeta)$. We know that L is Galois over \mathbb{Q} , so we define $G = \operatorname{Gal}(L/\mathbb{Q})$. We also let

$$c = \frac{\zeta + \zeta^{-1}}{2} = \cos(2\pi/5) = 0.309 \cdots,$$

 $C = \mathbb{Q}(c),$

and finally

$$c' = \frac{\zeta^2 + \zeta^{-2}}{2} = \cos(4\pi/5) = -0.809 \cdots$$

- 1. Write down explicitly the minimal polynomial of ζ over \mathbb{Q} , and express its complex roots in terms of ζ .
- 2. Deduce that $\zeta + \zeta^2 + \zeta^3 + \zeta^4 = -1$.
- 3. Prove that G is a cyclic group. What is its order? Find an explicit generator of G.
- 4. Deduce that $c \notin \mathbb{Q}$.
- 5. Make the list of all subgroups of G.
- 6. Draw a diagram showing all the fields E such that $\mathbb{Q} \subset E \subset L$, ordered by inclusion.
- 7. What are the conjugates of c over \mathbb{Q} ? Determine explicitly the minimal polynomial of c over \mathbb{Q} (exact computations only, computations with the approximate value of c are forbidden).
- 8. Deduce that

$$c = \frac{-1 + \sqrt{5}}{4}.$$

- 9. What are the conjugates of ζ over C (as opposed to over \mathbb{Q})?
- 10. Deduce that

$$\zeta = \frac{-1 + \sqrt{5} + i\sqrt{10 + 2\sqrt{5}}}{4}.$$

1

Solution 1

1. The minimal polynomial of ζ over \mathbb{Q} is the 5th cyclotomic polynomial

$$\Phi_5(x) = \frac{x^5 - 1}{\Phi_1(x)} = \frac{x^5 - 1}{x - 1} = x^4 + x^3 + x^2 + x + 1.$$

Its complex roots are the primitive 5-th roots of 1, namely

$$\mu_5^{\times} = \{ \zeta^k \mid k \in (\mathbb{Z}/5\mathbb{Z})^{\times} \} = \{ \zeta, \zeta^2, \zeta^3, \zeta^4 \}.$$

2. By Vieta and the previous question,

$$\zeta + \zeta^2 + \zeta^3 + \zeta^4 = \sum$$
 Roots of $\Phi_5(x) = -$ Coeff. of $x^3 = -1$.

Alternatively,

$$1+\zeta+\zeta^2+\zeta^3+\zeta^4=\sum \text{Roots of } x^5-1=-\text{Coeff. of } x^4=0.$$

3. We know that G can be identified to $(\mathbb{Z}/5\mathbb{Z})^{\times}$ by matching $x \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ to $\sigma_x : z \mapsto z^x \in G$ for all $z \in \mu_5$. In particular, $G \simeq (\mathbb{Z}/5\mathbb{Z})^{\times}$ is an Abelian group of order $\phi(5) = 4$. To prove that it is cyclic, we can notice that $2 \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ is a generator since

$$2 \neq 1$$
, $2^2 = 4 \neq 1$, $2^3 = 3 \neq 1$, $2^4 = 1$,

so that $\sigma_2 \in G$ is a generator. We can also argue that since 5 is prime, $\mathbb{Z}/5\mathbb{Z}$ is a finite field, so its multiplicative group is cyclic; but then we still need to find an explicit generator.

- 4. The element $\sigma_2 \in G$ acts on L by $\zeta \mapsto \zeta^2$, and thus takes $c = \frac{\zeta + \zeta^{-1}}{2}$ to $\frac{\zeta^2 + \zeta^{-2}}{2} = c'$. Since $c' \neq c$ (clear from their numerical values), we have $c \notin L^G$; but $L^G = \mathbb{Q}$ since L is Galois over \mathbb{Q} .
- 5. Since $G \simeq \mathbb{Z}/4\mathbb{Z}$ is cyclic of order 4, its only nontrivial subgroup is $2\mathbb{Z}/4\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z}$, and is generated by $\sigma_2^2 = \sigma_4 = \sigma_{-1}$. Our list is thus

$$\begin{cases}
1 \\
 \\
H = \{\sigma_{\pm 1}\}
\end{cases}$$

$$G.$$

6. We already know that under the Galois correspondence, $\{\sigma_1\}$ corresponds to L, and G to \mathbb{Q} . It remains to identify L^H .

We know that $[L^H:\mathbb{Q}] = [G:H] = 2$; besides $\sigma_{-1} \in H$ acts by $\zeta \mapsto \zeta^{-1}$ (i.e. is the complex conjugation) and therefore fixes c, so that $c \in L^H$, whence

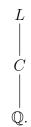
$$C = \mathbb{Q}(c) \subseteq L^H.$$

2

Since $c \notin \mathbb{Q}$, we have $C \supseteq \mathbb{Q}$ and so $[C : \mathbb{Q}] \geqslant 2$, so finally

$$L^H = C.$$

Our diagram is thus



- 7. The conjugates of c over \mathbb{Q} are the $\sigma(c)$ for $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ (and also for $\sigma \in \operatorname{Gal}(C/\mathbb{Q})$), i.e.
 - c itself for $\sigma = 1$,
 - $\frac{\zeta^2 + \zeta^{-2}}{2} = c'$ for $\sigma = 2$,
 - $\frac{\zeta^{-2} + \zeta^2}{2} = c'$ for $\sigma = 3 = -2$,
 - and $\frac{\zeta^{-1}+\zeta}{2}=c$ for $\sigma=4=-1$,

so finally, just c itself and c'. (We can get the same conclusion faster by taking σ in the smaller quotient $\operatorname{Gal}(C/\mathbb{Q}) = G/H = \{\sigma_{\pm 1}, \sigma_{\pm 2}\} \simeq (\mathbb{Z}/5\mathbb{Z})^{\times}/\pm 1$ of $\operatorname{Gal}(L/\mathbb{Q})$, if we are not afraid to work with this quotient). The minimal polynomial of c over \mathbb{Q} is thus

$$\begin{split} \prod_{\beta \text{ conjugate to } c} (x-\beta) &= (x-c)(x-c') \\ &= x^2 - (c+c')x + cc' \\ &= x^2 - \frac{\zeta + \zeta^{-1} + \zeta^2 + \zeta^{-2}}{2}x + \frac{(\zeta + \zeta^{-1})(\zeta^2 + \zeta^{-2})}{4} \\ &= x^2 - \frac{\zeta + \zeta^4 + \zeta^2 + \zeta^3}{2}x + \frac{\zeta^3 + \zeta^4 + \zeta + \zeta^2}{4} \\ &= x^2 + \frac{1}{2}x - \frac{1}{4}. \end{split}$$

8. By solving $x^2 + \frac{1}{2}x - \frac{1}{4} = 0$, we find that $\Delta = 5/4$, whence

$$c, c' = \frac{-1 \pm \sqrt{5}}{4}.$$

Since c>c', we deduce that $c=\frac{-1+\sqrt{5}}{4}$ (and also that $c'=\frac{-1-\sqrt{5}}{4}$).

- 9. The conjugates of ζ over C are the elements of the orbit of ζ under $H = \operatorname{Gal}(L/C)$, that is to say the $\sigma(\zeta)$ for $\sigma \in \operatorname{Gal}(L/C) = H = {\sigma_{\pm 1}}$. So they are ζ and ζ^{-1} .
- 10. Similarly to the previous questions, the minimal polynomial of ζ over C is

$$\prod_{\substack{\beta \text{ conjugate} \\ \text{of } \zeta \text{ over } C}} (x-\beta) = (x-\zeta)(x-\zeta^{-1}) = x^2 - (\zeta+\zeta^{-1})x + \zeta\zeta^{-1} = x^2 - 2cx + 1 \in C[x],$$

whose roots are

$$\frac{2c \pm \sqrt{4c^2 - 4}}{2} = c \pm \sqrt{c^2 - 1} = \frac{-1 + \sqrt{5} \pm i\sqrt{10 + 2\sqrt{5}}}{4}$$

using $c = \frac{-1+\sqrt{5}}{4}$. Since ζ (as opposed to ζ^{-1}) is the root with positive imaginary part (draw a regular pentagon; alternatively $\operatorname{Im} \zeta = \sin(2\pi/5) > 0$ as $2\pi/5 < \pi$), we conclude that

$$\zeta = \frac{-1 + \sqrt{5} + i\sqrt{10 + 2\sqrt{5}}}{4}.$$