
Galois theory — Exercise sheet 2
https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU34101/index.html

Version: October 22, 2021

Email your answers to mascotn@tcd.ie by Friday October 22nd, 4PM.

Exercise 1 A cyclic biquadratic extension (100 pts)

Let α =
√

13, K = Q(α), β = i
√

65 + 18
√

13 (where i2 = −1), β′ = i
√

65− 18
√

13
(note that 65 > 18

√
13), and L = Q(β).

1. (6 pts) Prove that the minimal polynomial of β over Q is

M(x) = (x2 + 65)2 − 182 · 13 = x4 + 130x2 + 13.

2. (10 pts) What are the Galois conjugates of β over Q?

3. (14 pts) Prove that L is a Galois extension of Q.

Hint: Check that ββ′ = −α.

4. (6 pts) Explain why there exists an element σ ∈ Gal(L/Q) such that σ(β) = β′.

5. (10 pts) Let σ ∈ Gal(L/Q) be such that σ(β) = β′ as above. Explain why
σ(α) makes sense, and determine σ(α).

6. (10 pts) Let again σ ∈ Gal(L/Q) be such that σ(β) = β′ as above. Determine
the action of σ on the conjugates of β.

Hint: Again, ββ′ = −α.

7. (20 pts) Deduce that Gal(L/Q) ' Z/4Z.

8. (12 pts) Sketch a diagram showing all the fields Q ⊆ E ⊆ L, ordered by
inclusion.

9. (12 pts) Does i
√

13 ∈ L?

Solution 1

1. First of all, we have β2 = −(65 + 18
√

13) so (β2 + 65)2 = (18
√

13)2, so β is
indeed a root of M(x). Besides, the expanded form of M(x) reveals that it
is Eisenstein at 13, so it is irreducible over Q; since it is also monic, it is the
minimal polynomial of β over Q.
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2. The Galois conjugates of β over Q are by definition the roots of its minimal
polynomial over Q, namely M(x). Since it is of degree 4, there are at most 4
of them (in fact exactly 4, because we are in characteristic 0 so this irreducible
polynomial must be separable). But one checks as above that ±β and ±β′
are roots of M(x); since these 4 numbers are distinct, they are the Galois
conjugates of β.

3. We find indeed that

ββ′ = −
√

(65 + 18
√

13)(65− 18
√

13) =
√

652 − 182 · 13 = −
√

13.

Besides, L 3 β2 = −(65+18
√

13), so
√

13 ∈ L since 65, 18 ∈ L ⊃ Q. Therefore
β′ = −

√
13/β ∈ L. It follows that the conjugates of β lie in L, so L = Q(β) is

the splitting field of M(x) over Q, and is therefore a normal extension of Q.
It must also be separable, since the characteristic of Q is 0.

4. Since L/Q is Galois, given any conjugate γ of β, there exists at least one
σ ∈ Gal(L/Q) such that σ(β) = γ.

5. σ is a function from L to L, so σ(α) makes sense since we have shown that
α ∈ L. More specifically, we have that

α = −β
2 + 65

18
,

so

σ(α) = σ

(
−β

2 + 65

18

)
= −σ(β2) + 65

18
= −β

′2 + 65

18
= −α

since σ ∈ Gal(L/Q) is a field automorphism which fixes the rationals.

6. These conjugates are ±β and ±β′, and we already know that σ(β) = β′, which
immediately implies that σ(−β) = −β′. Besides, since β′ = −α/β, we have

σ(β′) = −σ(α)/σ(β) = α/β′ = −β,

which immediately implies that σ(−β′) = β.

7. We know that # Gal(L/Q) = [L : Q] = [Q(β) : Q] = degM(x) = 4. Lagrange
therefore implies that the order of σ is 1 or 2 or 4. But the above question
shows that neither σ nor σ2 is the identity, so σ has order 4. As result,
Gal(L/Q), which is a group of order 4 which contains an element of order 4,
must be cyclic (and generated by this element σ; more specifically, we see that
σ acts on the conjugates of β by the 4-cycle β 7→ β′ 7→ −β 7→ −β′ 7→ β).

8. Since Gal(L/Q) = 〈σ〉 is cyclic, its only nontrivial subgroup is H = 〈σ2〉,
which has cardinal 2 and therefore index 2. The Galois correspondence thus
shows that

Q ⊂ LH ⊂ L

is the complete list of intermediate fields, where both inclusions are of degree 2.
On the other hand, we know that α ∈ L, so K = Q(α) is a subfield of L. The
minimal polynomial of α over Q is x2 − 13 (Eisenstein at 13), so [K : Q] = 2;
therefore K = LH . Final answer:

Q ⊂ K ⊂ L.
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9. If i
√

13 ∈ L, then E = Q(i
√

13) is a subfield of L, of degree 2 over Q (same
argument: the minimal polynomial of i

√
13 is x2+13), so by the above question

we must have E = K. But this is absurd, for instance because K ⊂ R whereas
E 6⊂ R. So i

√
13 6∈ L.

This was the only mandatory exercise, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I
highly recommend that you try to solve them for practice, and you are
welcome to email me if you have questions about them. The solutions
will be made available with the solution to the mandatory exercise.

Exercise 2 Yes or no?

Let f(x) = x3 + x + 1 ∈ Q[x] (you may assume without proof that f is irreducible
over Q), and let L = Q[x]/(f).

1. Is L a separable extension of Q? Explain.

2. Is L a normal extension of Q? Explain.

Hint: What does the fact that f : R −→ R is strictly increasing tell you about
the complex roots of f?

3. Is L a Galois extension of Q? Explain.

Solution 2

1. Yes, since all fields of characteristic 0 are perfect.

2. Since f : R −→ R is strictly increasing, f has exactly one real root α (interme-
diate value theorem) and thus one complex-conjugate pair of roots β, β̄. The
images of L by its [L : Q] = 3 Q-embeddings into C are Q(α) ⊂ R, Q(β) 6⊂ R,
and Q(β) 6⊂ R. Since some are ⊂ R but others are not, they do not all agree,
so L is not normal over Q.

3. No, since it is not normal over Q.

Exercise 3 Square roots: warm-up

This exercise is not Galois theory per se, but is meant as a warm-up for the next
exercise. The results it establishes may also be used profitably on future exercises.

Recall that each positive integer can be factored uniquely into a product of primes,
and that each rational number can be written uniquely as n/d with n ∈ Z, d ∈ Z>1,
and gcd(n, d) = 1.

1. Let r = n/d ∈ Q× be a nonzero rational number, where n ∈ Z, d ∈ Z>1, and
gcd(n, d) = 1. Prove that r is a square in Q iff. n and d are squares in N.

2. Let a, b ∈ Q×. Prove that Q(
√
a) = Q(

√
b) iff. a/b is a square in Q.
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Solution 3

1. Clearly, if n = m2 and d = e2 are squares in N, then r = (m/e)2 is a square
in Q. Conversely, suppose r is a square in Q, say r = s2 with s = m/e ∈ Q
where gcd(m, e) = 1. Then gcd(m2, e2) = 1 (any nontrivial common factor of
m2 and e2 would have a prime factor, which would show up in the factorisation
of m2 and thus of m, and also in that of e2 and thus of e, absurd), so r = m2/e2

is of the desired form.

2. We distinguish 3 cases.

• If a and b are both squares in Q, then so is a/b; moreover Q(
√
a) =

Q(
√
b) = Q, so the equivalence is satisfied.

• If one of a and b is a square in Q, say b is but a is not, then neither is a/b
(else a = a/b × b would be), and Q(

√
b) = Q 63

√
a so Q(

√
a) ) Q(

√
b),

so the equivalence is again satisfied.

• It remains to check the equivalence when neither a nor b are squares in Q.

– Suppose a/b is a square in Q, say a/b = r2 where r ∈ Q×. Then
√
b =

r
√
a ∈ Q(

√
a) so Q(

√
b) ⊆ Q(

√
a), and

√
a = 1

r

√
b ∈ Q(

√
b) so

Q(
√
a) ⊆ Q(

√
b), whence Q(

√
a) = Q(

√
b).

– Conversely, suppose Q(
√
a) = Q(

√
b). Then

√
b ∈ Q(

√
a) = {x +

y
√
a | x, y ∈ Q}, so

√
b = u+v

√
a for some u, v ∈ Q. Squaring yields

b = (u2 + av2) + 2uv
√
a; since a is not a square in Q, Q(

√
a) admits

1,
√
a as a Q-basis, whence u2 + av2 = b and 2uv = 0 by identifying

coefficients on this basis. If v = 0, then u2 = b, contrary to our
assumption that b is not a square. Therefore u = 0, so av2 = b,
whence a/b = (1/v)2 is a square in Q.

Remark: One shows similarly that given a field K and a, b in K, we have
K(
√
a) = K(

√
b) iff. a/b is a square in K. However, the latter condition is more

delicate to assess, since we do not have an analogue of the first question for a general
field K.

Exercise 4 Square roots

You may want to use the results established in the previous exercise to solve this
exercise.

Let L = Q(
√

10,
√

42).

1. Prove that L is a Galois extension of Q.

2. Prove that [L : Q] = 4.

3. Describe all the elements of Gal(L/Q). What is Gal(L/Q) isomorphic to?

4. Sketch the diagram showing all intermediate extensions Q ⊆ E ⊆ L, ordered
by inclusion. Explain clearly which field corresponds to which subgroup.

5. Does
√

15 ∈ L? Use the previous question to answer.
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Solution 4

1. L is the splitting field over Q of (x2 − 10)(x2 − 42) ∈ Q[x] which is separable
(not multiple root), so it is Galois over Q.

2. Since 10 is not a square, Q(
√

10) 6= Q, so [Q(
√

10) : Q] = 2. In order to
conclude that [L : Q] = 4, we need to prove that [L : Q(

√
10)] is 2 and not 1,

i.e. that
√

42 6∈ Q(
√

10). This follows from the previous exercise, since 42
10

= 21
5

is not a square in Q as 21 is not a square in N.

3. We already know that # Gal(L/Q) = [L : Q] = 4 since L is Galois over Q.
Besides, an element σ ∈ Gal(L/Q) must take

√
10 ∈ L to a root of x2 − 10 ∈

Q[x], i.e. to ±
√

10; and similarly σ(
√

42) = ±
√

42. Since σ is completely
determined by what it does to

√
10 and to

√
42, this leaves us with only 4

possibilities for σ. But since # Gal(L/Q) = 4, all these possibilities must
occur. Therefore, Gal(L/Q) is made up of

• Id,

• σ :
√

10 7→ −
√

10,
√

42 7→
√

42,

• τ :
√

10 7→
√

10,
√

42 7→ −
√

42,

• στ :
√

10 7→ −
√

10,
√

42 7→ −
√

42.

We see that στ = τσ, and that σ2 = τ 2 = (στ)2 = Id. Therefore

(Z/2Z)× (Z/2Z) −→ Gal(L/Q)
(a, b) 7−→ σaτ b

is a group isomorphism.

4. We know from class that since Gal(L/Q) ' (Z/2Z) × (Z/2Z), its subgroup
diagram is

{Id}

{Id, σ} {Id, στ} {Id, τ}

Gal(L/Q).

Let us now find the corresponding fields.

• Clearly, L{Id} = L.

• We also have LGal(L/Q) = Q since L is Galois over Q.

• We know that L{Id,σ} is an extension of Q of degree [Gal(L/Q) : {Id, σ}] =
2. It is the subfield of L formed of the elements fixed by σ, so it contains√

42 and thus Q(
√

42). Since the latter is already an extension of Q of
degree 2, it must agree with L{Id,σ}.

• Similarly, L{Id,τ} is an extension of degree 2 of Q, which contains
√

10 as
it is fixed by τ , so L{Id,τ} = Q(

√
10).
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• Finally, L{Id,στ} is an extension of degree 2 of Q, but it contains neither√
10 nor

√
42 since they are not fixed by στ . However,

√
10
√

42 =
√

420
is fixed by στ since

στ(
√

10
√

42) = (−
√

10)(−
√

42),

so L{Id,στ} = Q(
√

420) = Q(
√

105).

The field diagram is thus

L

Q(
√

42) Q(
√

105) Q(
√

10)

Q.

5. No. Indeed, if
√

15 ∈ L, then Q(
√

15) is an intermediate field, but that
contradicts the previous question: in view of the previous exercise, Q(

√
15) is

neither of Q(
√

10), Q(
√

42), Q(
√

105) as neither 15
10

= 3
2
, 15

42
= 5

14
, 15

105
= 1

7
are

squares in Q.

Exercise 5 Bioche vs. Galois

The goal of this exercise is to give a Galois-theoretic interpretation of Bioche’s rules
(cf. https: // en. wikipedia. org/ wiki/ Bioche% 27s_ rules ), which are rules
suggesting appropriate substitutions to turn integrals involving trigonometric func-
tions into integrals of rational fractions.Knowledge of Bioche’s rules is not required
to solve this exercise.

In this exercise, we use the shorthands s for the sine function and c for the cosine
function, and we denote by C(s, c) the set of expressions such as

2sc3 − i
c− 7s+ 3

=
2 sinx cos3 x− i

cosx− 7 sinx+ 3

which are rational fractions in s = sinx and c = cosx with complex coefficients.
Observe that C(s, c) is a field with respect to point-wise addition and multiplication.

We write C(c) for the subfield of C(s, c) consisting of rational fractions which
can be expressed in terms of c only, and similarly C(s) for rational fractions in s
only. For example, c3−2c2+2i

ic−1 ∈ C(c), but s 6∈ C(c) since all the elements of C(c) are
even functions whereas s is not; observe however that s2 ∈ C(c) since s2 = 1− c2.

We also define K = C(s) ∩ C(c) ⊂ C(s, c), so that for instance the function
c2 = cos(2x) lies in K since c2 = 2c2 − 1 = 1− 2s2.

Finally, we define

µ : C(s, c) → C(s, c)
f(x) 7→ f(−x),

τ : C(s, c) → C(s, c)
f(x) 7→ f(x+ π),

σ : C(s, c) → C(s, c)
f(x) 7→ f(π − x);

observe that these are field automorphisms of C(s, c) which are involutive and com-
mute with each other, so they generate the subgroup

G = {Id, µ = στ, τ = µσ, σ = µτ} ' (Z/2Z)× (Z/2Z)

of Aut
(
C(s, c)

)
.
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1. Prove that the four inclusions K ⊂ C(s) ⊂ C(s, c) and K ⊂ C(s) ⊂ C(s, c)
are all strict.

2. Prove that [C(s) : K] = [C(s, c) : C(s)] = [C(c), K] = [C(s, c) : C(c)] = 2.

3. Prove that K = C(c2), where C(c2) is the field of rational fractions expressible
in terms of c2 only.

4. Prove that the extension C(s, c)/K is Galois, and describe its Galois group.

5. Let f ∈ C(s, c). Prove that if f is invariant by any two of µ, τ, σ, then it is
also invariant by the third one, and that in this case f ∈ C(c2).

6. Determine the minimal polynomials over K of the elements t = tan x = s/c
and s2 = sin(2x) = 2sc of C(s, c).

7. Draw a diagram showing all the subgroups of Gal(C(s, c)/K).

8. Draw a diagram showing all the intermediate fields E between K and C(s, c).
Where are the fields C(t), C(s2, c2), and C(s2) on this diagram?

Make sure find an explanation for all the surprising conclusions you may be led to!

Solution 5

1. Every element of C(c) is even since c is; therefore s 6∈ C(c), so C(s, c) =
C(c)(s) ) C(s). The same argument shows that s 6∈ K ⊂ C(c), so C(s) ) K.
Besides, s is invariant by σ whereas c is not, so c 6∈ C(s) so C(s, c) ) C(s),
and similarly c 6∈ K so C(c) ) K.

2. Since s2+c2 = 1, s is a root of the polynomial x2−(1−c2) ∈ C(c)[x]; therefore,
s is algebraic over C(c) over degree at most 2; since C(s, c) = C(c)(s), this
shows that [C(s, c) : C(c)] ≤ 2. Since this degree cannot be 1 by the previous
question, it must be 2. Similarly, [C(s, c) : C(s)] = 2.

The identity c2 = 2c2− 1 proves that c is a root of 2x2− 1− c2 ∈ K[x], so c is
algebraic of degree at most 2 over K. We have C(c) ⊆ K(c) since C ⊂ K, and
K(c) ⊆ C(c) since K ⊂ C(c), so C(c) = K(c) is an extension of K of degree
at most 2, hence exactly 2 by the previous question. Similarly, C(s) = K(s)
is an extension of K of degree at most 2, and hence 2, since s is a root of
2x2 + c2 − 1 ∈ K[x].

3. We know that C(c2) ⊆ K ( C(c); besides, since C(c) = C(c, c2) = C(c2)(c) as
c2 = 2c2−1 ∈ C(c), the fact that the polynomial 2x2−1−c2 used in the previous
question actually lies in C(c2)[x] shows that we have [C(c) : C(c2)] ≤ 2. The
tower law allows us to conclude that [K : C(c2)] ≤ 1.

4. The tower law shows that [C(s, c) : C(c2)] = [C(s, c) : C(c)][C(c) : K] =
2 × 2 = 4, so # AutK

(
C(s, c)

)
≤ 4, with equality iff. C(s, c) is Galois over

K. But since c2 is fixed by Id, µ, τ , and σ, these 4 automorphisms induce
the identity on C(c2) = K; therefore # AutK

(
C(s, c)

)
≥ 4. In conclusion,

# AutK
(
C(s, c)

)
= 4 = [C(s, c) : K], so C(s, c) is Galois over K with Galois

group Gal(C(s, c)/K) = {Id, µ, σ, τ} = G.
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5. Since any two of µ, τ, σ generate G, any element of C(s, c) fixed by two of
those is actually fixed by the whole of G = Gal(C(s, c)/K), and therefore lies
in C(s, c)Gal(C(s,c)/K) = K = C(c2).

6. Since C(s, c) is Galois over K, the minimal polynomial of any α ∈ C(s, c) is
the polynomial whose roots are the orbit of α under Gal(C(s, c)) = G.

In the case α = t, this orbit is {Id t = t, µt = −t, τ t = t, σt = −t} = {t,−t},
so the minimal polynomial of t over K is (x − t)(x + t) = x2 − t2. It must
lie in K[x], so we necessarily have t2 ∈ K = C(c2); indeed, we find that
t2 = s2

c2
= 1−c2

1+c2
∈ C(c2).

Similarly, since the orbit of s2 under G is {s2,−s2}, the minimal polynomial
of s2 over K is (x − s2)(x + s2) = x2 − s22, so we must have s22 ∈ K = C(c2);
and indeed s22 = (2sc)2 = (2s2)(2c2) = (1 + c2)(1 − c2) = 1 − c2 ∈ C(c2) —
that is simply s22 + c22 = 1.

7. Since Gal(C(s, c)/K) = G ' (Z/2Z)× (Z/2Z), its subgroup lattice is

{Id}

{Id, µ} {Id, τ} {Id, σ}

G.

8. We apply the Galois correspondence. The subfields corresponding to {Id} and
G are of course C(s, c) and K = C(c2), respectively. The subfield correspond-
ing to {Id, µ} contains c since µ fixes c, and is an extension of K of degree
[G : {Id, µ}] = 4/2 = 2, so it is C(c) by the second question. Similarly, the
subfield corresponding to {Id, σ} is C(s). Finally, the subfield corresponding
to {Id, τ} is also an extension of K of degree 2; besides, it contains t since
t is invariant by τ . By the previous question, C(t) is an extension of K of
degree at most 2; but t 6∈ K since t is not fixed by µ, so this extension has
degree exactly 2, so it is the subfield corresponding to {Id, τ}. The same
thing can be said about K(s2), so we are led to the curious conclusion that
C(t) = K(s2) = C(s2, c2); and indeed t = s

c
= 2sc

2c2
= s2

1+c2
∈ C(s2, c2) whereas

s2 = 2sc = 2tc2 = 2tc2

s2+c2
= 2t

t2+1
∈ C(t).

C(s, c)

C(c) C(t) = C(s2, c2) C(s)

C(c2).

As for C(s2), it does not appear on this diagram, simply because C(c2) 6⊂
C(s2)! (so yes, that was a trap.) Indeed, every element of C(s2) is invariant
by x 7→ π/2− x since s2 is; but c2 is not.
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