
Galois theory — Exercise sheet 1
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Version: October 6, 2021

Email your answers to mascotn@tcd.ie by Wednesday October 6, 4PM.

Exercise 1 Fewer roots to generate the splitting field (100pts)

1. Let K be a field such that charK 6= 2, and let F (x) = ax2 + bx + c ∈ K[x]
with a 6= 0. Finally, let K be an algebraic closure of K.

Observe that F (x) = a
((
x+ b

2a

)2 − ∆
(2a)2

)
, where ∆ = b2 − 4ac.

(a) (10pts) Prove that there exists δ ∈ K such that δ2 = ∆.

(b) (5pts) Express the roots of F (x) in K in terms of δ.

(c) (35pts) Suppose that ∆ is not a square in K (in other words, that δ 6∈ K).
Prove that F (x) is irreducible over K, and that K(δ) is both a stem field
and a splitting field of F (x) over K.

(d) (15pts) Suppose now that δ ∈ K. Describe a splitting field of F (x)
over K.

(e) (5pts) What breaks down if charK = 2? (The question merely asks you
which part(s) of the logic go wrong; you are not required to find a way
to fix what goes wrong.)

2. (30pts) Let K be a field, let F (x) ∈ K[x] have degree n ∈ N, and let α1, · · · , αn
be the roots of F (x) in an algebraic closure K of K, ordered in some arbitrary
way. Prove that K(α1, · · · , αn−1) is a splitting field of F (x) over K.

Hint: What is α1 + · · ·+ αn?

Solution 1

1. (a) Since K is an algebraic closure of K, the polynomial x2−∆ ∈ K[x] splits
completely over, and thus has all roots in, K.

(b) The factorisation F (x) = a
((
x+ b

2a

)2 −
(
δ
2a

)2
)

= a
(
x+ b+δ

2a

) (
x+ b−δ

2a

)
over K shows that the roots of F (x) in K are α+ = −b+δ

2a
and α− = −b−δ

2a
.

(c) F (x) has degree 2, so over any field, either it is irreducible, or it splits into
two factors of degree 1 and therefore has at least one root. Therefore, if
F (x) were reducible over K, then we would have at least one of α± ∈ K.
However, this is impossible: for instance, if we had α− ∈ K, then as
a, b ∈ K, we would also have δ = −2aα− + b ∈ K, a contradiction with
our assumption that δ 6∈ K. So F (x) must be irreducible over K.
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The same calculation also shows that δ ∈ K(α−), so that K(δ) ⊆ K(α−);
conversely, clearly α− = −b−δ

2a
∈ K(δ), so K(α−) ⊆ K(δ). In conclusion,

K(δ) = K(α−) is thus a stem field of F (x) over K.

The same logic with α+ instead of α− shows that K(δ) = K(α+); in
particular, both α± lies in K(δ), so that K(α−, α+) ⊆ K(δ). Conversely,
we have K(α−, α+) ⊇ K(α−) = K(δ), so we conclude that K(δ) =
K(α−, α+) is also a splitting field of F (x) over K.

(d) Since δ ∈ K, we have that both α± lie in K; therefore K(α+, α−) = K
itself is a splitting field of F (x) over K.

(e) The identity F (x) = a
((
x+ b

2a

)2 − ∆
(2a)2

)
becomes meaningless, since it

involves divisions by 2 = 0.

2. Let S = α1 + · · · + αn ∈ K. Then S is a symmetric polynomial in the αk
(more specifically, it agrees with σ1), so actually S ∈ K. It follows that
αn = S − α1 − · · · − αn−1 lies in K(α1, · · · , αn−1), so that

K(α1, · · · , αn) = K(α1, · · · , αn−1)(αn) = K(α1, · · · , αn−1),

which proves that K(α1, · · · , αn−1) is a splitting field of F (x) over K.

This was the only mandatory exercise, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I
highly recommend that you try to solve them for practice, and you are
welcome to email me if you have questions about them. The solutions
will be made available with the solution to the mandatory exercise.

Exercise 2 Small non-prime finite fields

1. Make a complete list of all finite fields (up to isomorphism) with at most 30
elements and which are not isomorphic to Z/pZ for some prime p ∈ N.

2. Give an explicit construction for each of them.

3. Make a list of all pairs (K,L) such that K and L are in your list and that L
contains a copy of K (up to isomorphism).

Solution 2

1. Finite fields are determined up to isomorphism by their cardinal, which can
be any prime power. Since we exclude prime, our list consists in

F4,F8,F9,F16,F25,F27,

which are respectively extensions of

F2,F2,F3,F2,F5,F3

of degree
2, 3, 2, 4, 2, 3.
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2. To construct them explicitly, we need irreducible polynomials of appropriate
degrees over the appropriate Fp.
A polynomial of degree 2 either factor as 1 + 1 or is irreducible; in particular,
if it has no root, then it is irreducible. We thus find

x2+x+1 has no roots in F2 =⇒ irreducible over F2 =⇒ F4 ' F2[x]/(x2+x+1),

x2 + 1 has no roots in F3 =⇒ irreducible over F3 =⇒ F9 ' F3[x]/(x2 + 1),

x2 + 2 has no roots in F5 =⇒ irreducible over F5 =⇒ F25 ' F5[x]/(x2 + 2).

A polynomial of degree 3 either factor as 1 + 1 + 1, 2 + 1, or is irreducible; in
particular, if it has no root, then it is irreducible. We thus find

x3+x+1 has no roots in F2 =⇒ irreducible over F2 =⇒ F8 ' F2[x]/(x3+x+1),

x3−x+1 has no roots in F3 =⇒ irreducible over F3 =⇒ F27 ' F3[x]/(x3−x+1).

Finally, a polynomial of degree 4 either factor as 1 + 1 + 1 + 1, 2 + 1 + 1,
3 + 1, 2 + 2, or is irreducible; in particular, if it has no root, then either it is
irreducible or it factors s 2 + 2. However the only irreducible of degree 2 over
F2 is x2 +x+ 1, and x4 +x+ 1 6= (x2 +x+ 1)2 = x4 +x2 + 1 and has no roots,
so it is irreducible, whence

F16 ' F2[x]/(x4 + x+ 1).

Remark. These are not the only possible choices of irreducible polynomials,
and therefore not the only possible choices of models for these finite fields. See
the next exercise for an example.

3. We know that Fq ⊂ Fq′ iff. q′is a power of q. Therefore, the only inclusions
between fields in our list is F4 ⊂ F16.

Remark. We will see later that F4 has a nontrivial automorphism of order 2,
so that there are actually two distinct embeddings of F4 into F16.

Exercise 3 Two models for F8

Let K = F2[x]/(x3 + x+ 1) and L = F2[x]/(x3 + x2 + 1).

1. Prove that K and L are fields.

2. Prove that K and L are isomorphic.

3. Let k(x) = x3 + x + 1 ∈ F2[x], so that K = F2[x]/k(x). Establish a natural
bijection between { isomorphisms from K to L } and { roots of k(x) in L }.
Hint: Prove that any morphism from K to L is automatically an F2-morphism.
What does this imply about the image of the class of x in K by such a mor-
phism?

4. Describe explicitly an isomorphism between K and L.

Hint: Write L = F2[y]/(y3+y2+1). Which equation does the class of y+1 ∈ L
satisfy? (Remember that z = −z in characteristic 2, since 2z = 0.)

5. Describe explicitly all the isomorphisms between K and L.

Hint: Frobenius.
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Solution 3

1. The polynomial x3 + x+ 1 is of degree 3, so if it were reducible over F2, then
it would have a root in F2. But it does not vanish at 0 nor at 1, so it is
irreducible; therefore K is a field. Similarly, x3 + x2 + 1 is irreducible, so L is
a field.

2. #K = 2[K:F2] = 23 = 8, and similarly #L = 8. Since K and L are two finite
fields of the same cardinal, they must be isomorphic.

3. For clarity, let α ∈ K be the class of x in K, so that α3 + α + 1 = 0.

Note that since F2 = {0, 1}, any morphism from K to L will automatically be
an F2-morphism, and must therefore take the root α of k(x) ∈ F2[x] to a root
of k(x) in L. Conversely, given such a root γ ∈ L, the evaluation morphism

F2[x] −→ L
f(x) 7−→ f(γ)

has its kernel which is by definition generated by the minimal polynomial of γ
over F2, which must be k(x) itself since k(x) is irreducible over F2 and monic;
it therefore induces a morphism from F2[x]/k(x) = K to L, which is injective
and therefore bijective since #K = #L = 8.

4. The previous question shows that in order to find an isomorphism between K
and L, we must find a root γ of k(x) in L. For clarity, write L = F2[y]/(y3 +
y2 +1), and let β ∈ L be the class of y in L, so tthat β3 +β2 +1 = 0. Following
the hint, we check that γ = β + 1 satisfies

γ2 = β2 + 1 (Frobenius in char. 2),

γ3 = γγ2 = (β + 1)(β2 + 1) = β3 + β2 + β + 1 = β = γ − 1

whence 0 = γ3−γ+1 = γ3 +γ+1 since we are in characteristic 2. So γ = β+1
is a root of k(x) in L, whence the isomorphism

K = F2[x]/(x3 + x+ 1) −→ L = F2[y]/(y3 + y + 1)
f(α) = f(x) 7−→ f(γ) = f(β + 1) = f(y + 1).

5. By question 3., this amounts to finding all the roots of k(x) in L. We already
know that there are at most deg k(x) = 3 of them, so there are at most 3
isomorphisms from K to L.

Oberserve now that since the Frobenius l 7→ l2 of L is an F2-automorphism, it
will take any root of k(x) ∈ F2[x] in L to another root of k(x) in L. We can
use this idea to try to find new roots of k(x) from our old root γ = β + 1. We
thus find the roots γ2 = (β+1)2 = β2 +12 = β2 +1, and (β2 +1)2 = β4 +12 =
ββ3+1 = β(−β2−1)+1 = β(β2+1)+1 = β3+β+1 = −β2−1+β+1 = β2+β
since −l = l in characteristic 2. Since these roots are all distinct, there cannot
be any more, so we stop there (you can check that applying Frobenius to β2+β
would bring us back to our original root γ).

In conclusion, we have found exactly 3 roots of k(x) in L, and thus 3 isomor-
phisms from K to L, given respectively by f(α) 7→ f(β+1), f(α) 7→ f(β2 +1),
and f(α) 7→ f(β2 + β).
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Remark. Let i, j : K ' L be two isomorphisms. Then j ◦ i−1 : L ' L is
an automorphism of L. Conversely, if σ ∈ Aut(L) and i : K ' L is an
isomorphism, then σ ◦ i is also an isomorphism from K to L. Therefore, we
can find all isomorphisms from K to L by post-composing the isomorphism
found in the previous question with automorphisms of L. What we did in this
question was to take these automorphisms of L to be iterations of the Frobenius.
That this was enough to find all the isomorphisms from K to L comes from
the fact that the group Aut(L) is actually generated by the Frobenius, as we
shall see later in this module.

Exercise 4 A formula for the discriminant

Let F (x) = xn + bx + c ∈ C[x], where n > 2 and b, c ∈ C. Let β ∈ C be such
that βn−1 = −b/n, and let ζ = e2πi/(n−1), so that ζn−1 = 1 and that xn−1 − yn−1 =∏n−2

k=0(x− ζky).

1. Express the roots of F ′(x) in terms of ζ and β.

2. Prove that F (ζkβ) =
(
1− 1

n

)
βζkb+ c for all k ∈ Z.

3. Deduce that discF = (−1)n(n−1)/2
(
(1− n)n−1bn + nncn−1

)
.

4. For which primes p ∈ N does the polynomial x5 − 5x + 6 have multiple roots
in Fp?

Solution 4

1. Since F ′(x) = nxn−1 + b = n(xn−1 − βn−1) = n
∏n−1

k=1(x − ζkβ), the roots of
F ′(x) are the ζkβ for 0 ≤ k ≤ n− 2 (or, more elegantly, for k mod n− 1).

2. We compute that

F (ζkβ) = ζknβn + bζkβ + c = ζk
(
−β
n

)
+ bζkβ + c =

(
1− 1

n

)
βζkb+ c.

3. It follows that

Res(P, P ′) = nn
n−2∏
k=0

P (ζkβ) because the leading coefficient of P ′ is n

= nn
n−2∏
k=0

((
1− 1

n

)
βζkb+ c

)

= nn(−1)n−1

n−2∏
k=0

(
−c− ζk

(
1− 1

n

)
βb

)

= nn(−1)n−1
((
− c
)n−1 −

(
(1− 1/n)βb

)n−1
)

as
n−2∏
k=0

(x− ζky) = xn−1 − yn−1

= nncn−1 − nnβn−1bn−1(1/n− 1)n−1

= nncn−1 − n
(
− b
n

)
(1− n)n−1bn−1

= nncn−1 + (1− n)n−1bn.
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Since F (x) is monic, we conclude that

discP = (−1)n(n−1)/2 Res(P, P ′) = (−1)n(n−1)/2
(
(1− n)n−1bn + nncn−1

)
.

4. Let f(x) = x5 − 5x + 6. Thanks to the formula established in the previous
question, we find that disc f = (−4)4(−5)5 + 5564 = 55(64 − 44) = 55 · 1040 =
55 · 24 · 5 · 13 = 24 · 56 · 13.

However, the fact that we could also (in theory) have computed this discrimi-
nant as a determinant with integer entries shows that

disc(f mod p) = (disc f) mod p

for all primes p. Therefore, f has multiple roots in Fp iff. disc f = 0 mod p,
iff. p ∈ {2, 5, 13}.
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