

Faculty of Science, Technology, Engineering and Mathematics School of Mathematics

JS/SS Maths/TP/TJH

Semester 2, 2021

MAU34101 Galois theory

Never Nowhere Ever

Dr. Nicolas Mascot

Instructions to candidates:

Additional instructions for this examination:

This is a mock exam paper for revision purposes only.

You may not start this examination until you are instructed to do so by the Invigilator.

Question 1 Subgroups for appetiser

Sketch a diagram showing all the subgroups of G when:

- 1. $G = (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}),$
- 2. $G = V_4 = { \mathrm{Id}, (12)(34), (13)(24), (14)(23) } < S_4,$
- 3. $G = S_3$,
- 4. $G = \mathbb{Z}/n\mathbb{Z}$, for n up to 12.

Question 2 Bookwork

Let $K \subset L$ be a finite extension, and let $\Omega \supset K$ be algebraically closed. Which inequalities do we always have between [L:K], $\# \operatorname{Aut}_K(L)$, $\# \operatorname{Hom}_K(L,\Omega)$? When are they equalities? State equivalent conditions.

Question 3 Correspondence in degree 3

Let K be a field, and $F(x) \in K[x]$ be separable and of degree 3. Denote its 3 roots in its splitting field L by $\alpha_1, \alpha_2, \alpha_3$.

- 1. What are the possibilities for $Gal_K(F)$? How can you tell them apart?
- For each of the cases found in the previous question, sketch the diagram showing all the fields K ⊂ E ⊂ L and identifying these fields. In particular, locate K(α₁), K(α₂), K(α₃), K(α₁, α₂), etc.
- 3. In which of the cases above is the stem field of F isomorphic to its splitting field? (*Warning: there is a catch in this question.*)

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2021

Question 4 The fundamental theorem of algebra

The goal of this Question is to use Galois theory to prove by contradiction that \mathbb{C} is algebraically closed.

You may use without proof the following facts:

- If $F(x) \in \mathbb{R}[x]$ is a polynomial of odd degree, then F(x) has at least one root in \mathbb{R} .
- If $G(x) \in \mathbb{C}[x]$ is a polynomial of degree 2, then G(x) has at least one root in \mathbb{C} .
- If G is a finite group of cardinal #G = 2^ab with b odd, then G has at least one subgroup of cardinal 2^a.
- If H is a finite group whose cardinal #H = 2^a is a power of 2, then for each integer
 0 ≤ n ≤ a, H has at least one subgroup of cardinal 2ⁿ.
- Prove that if C were not algebraically closed, then there would exist a finite nontrivial extension K of C (that is to say K ⊋ C and 1 < [K : C] < ∞).
- Deduce that there would exist a finite nontrivial extension C ⊊ L such that the extension R ⊊ L is Galois.
- 3. Prove that $[L : \mathbb{R}]$ would necessarily be a power of 2.
- 4. Prove that there would exist an intermediate field $\mathbb{C} \subsetneq F \subseteq L$ such that $[F : \mathbb{C}] = 2$.
- 5. Derive a contradiction.

Note: the admitted facts at the top of the Question follow respectively from elementary calculus (limits at $\pm\infty$ and then intermediate value theorem), the formula to solve quadratic equations and the fact that every element of \mathbb{C} admits a square root in \mathbb{C} , Sylow's theorem, and Sylow's theorem again.

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2021

Question 5 Galois group computations

Determine the Galois group over \mathbb{Q} of the polynomials below, and say if they are solvable by radicals over \mathbb{Q} .

- 1. $x^3 x^2 x 2$,
- 2. $x^3 3x 1$,
- 3. $x^3 7$,
- 4. $x^5 + 21x^2 + 35x + 420$,
- 5. $x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.

Question 6 A cosine formula

Let $c = \cos(2\pi/17)$.

- 1. Prove that the group $(\mathbb{Z}/17\mathbb{Z})^{\times}$ is cyclic, and find a generator for it.
- 2. Prove that c is algebraic over \mathbb{Q} .
- 3. Determine the conjugates of c over \mathbb{Q} , and its degree as an algebraic number over \mathbb{Q} .
- 4. Explain how one could in principle use Galois theory (and a calculator / computer) to find an explicit formula for *c*.

Question 7 Extensions of finite field are Galois

Let $p \in \mathbb{N}$ be prime, $n \in \mathbb{N}$, and $q = p^n$.

- 1. Give two proofs of the fact that the extension $\mathbb{F}_p \subset \mathbb{F}_q$ is Galois: one by viewing \mathbb{F}_q as a splitting field, and the other by considering the order of $\operatorname{Frob} \in \operatorname{Aut}(\mathbb{F}_q)$.
- 2. What does the Galois correspondence tell us for $\mathbb{F}_p \subset \mathbb{F}_q$?
- 3. Generalise to an arbitrary extension of finite fields $\mathbb{F}_q \subset \mathbb{F}_{q'}$.

Page 4 of 4

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2021