
Introduction to number theory
Exercise sheet 4

https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU22301/index.html

Version: November 12, 2021

Email your answers to makindeo@tcd.ie by Monday November 22nd, 2PM.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Bézout in Z[i] (30 pts)

Let α = 4 + 6i and β = 5 + 3i.

1. (15 pts) Compute gcd(α, β).

2. (15 pts) Find ξ, η ∈ Z[i] such that αξ + βη = gcd(α, β).

Solution 1

This is the same principle as in Z: we do euclidean divisions until we get a null
remainder, and then we go back up the relations we have found to get ξ and η.

1. Let us first perform a euclidean division of α by β. We have

α

β
=

(4 + 6i)(5− 3i)

34
=

(2 + 3i)(5− 3i)

17
=

19 + 9i

17
≈ 1 + i,

so the quotient is 1 + i and the remainder is (4 + 6i)− (5 + 3i)(1 + i) = 2− 2i.
We record this relation for later use.

Next, we divide the divisor by the remainder, that is to say 5 + 3i by 2 − 2i.
We have

5 + 3i

2− 2i
=

(5 + 3i)(2 + 2i)

8
=

1

2
+ 2i ≈ 2i,

so our quotient is 2i (but we could also take 1 + 2i) and the remainder is
(5 + 3i)− (2− 2i)2i = 1− i. We record this relation for later use.

Next step: divide 2 − 2i by 1 − i. Obviously, this is an exact division, with

quotient 2 and remainder 0. This means that gcd(α, β) = 1− i (note that

1− i = −i(1 + i) is associate to 1 + i, so 1 + i is also a gcd).

2. Using the relations that we recorded in the previous question, we find

1−i = (5+3i)−(2−2i)2i = (5+3i)−
(
(4+6i)−(5+3i)(1+i)

)
2i = (5+3i)(−1+2i)−(4+6i)(2i)

so we can take ξ = −2i, η = −1 + 2i .
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Exercise 2 Do it before next year! (35 pts)

Find the complete factorisation of 21 + 22i in Z[i].

Solution 2

Let α = 21 + 22i. We know that it has a factorisation of the form

α = uπ1 · · · πr

where u ∈ Z[i]× = {±1,±i} and the πj are irreducibles. This means that for each j,
πj is associate to an irreducible π′j which is either 1+i, a prime number ≡ −1 mod 4,
or an irreducible of norm a prime number ≡ +1 mod 4. This πj = ujπ

′
j for some

uj ∈ Z[i]×; putting uj into u, we may assume that πj = π′j is of the above form.
We compute that

N(α) = 212 + 222 = 925 = 52 × 37.

Since 5 and 37 are primes ≡ +1 mod 4, this means that our factorisation actually
has the shape

α = uπ1π2π3

where u ∈ Z[i]×, N(π1) = N(π2) = 5, and N(π3) = 37.
As 5 ≡ +1 mod 4, there exists an irreducible π ∈ Z[i] such that 5 = ππ, and

π1 and π2 are associate with π or π. As 5 = 22 + 12, we can take π = 2 + i. We
compute that

α

π
=

(21 + 22i)(2− i)
(2 + i)(2− i)

=
64

5
+

23

5
i 6∈ Z[i];

this shows that π - α, so neither π1 nor π2 can be associate with π, so both must
be associate to π = 2 − i. Changing u if necessary, we may thus assume that
π1 = π2 = 2− i.

We are then left with

uπ3 =
α

(2− i)2
=

20 + 21i

3− 4i
=

(20 + 21i)(3 + 4i)

(3− 4i)(3 + 4i)
= −1 + 6i.

This has norm (−1)2 + 62 = 37 (as predicted) which is prime, so it is irreducible
(note that we already knew that, since associates to irreducibles are irreducible); in
conclusion, we have the complete factorisation

21 + 22i = (2− i)2(−1 + 6i).

Personally, I prefer to pull the unit i out of −1 + 6i = i(6 + i), and write

21 + 22i = i(2− i)2(6 + i).
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Exercise 3 Twice a sum of two squares (35 pts)

Let n ∈ N. Prove that if n is a sum of two squares, then so is 2n.
Your proof must be constructive, meaning that given a, b ∈ Z such that n = a2 + b2,
it must explain how to find c, d ∈ Z such that 2n = c2 + d2.
Hint: 1 + i.

Solution 3

Let a, b ∈ Z such that n = a2 + b2. Then n = N(α), where α = a + bi ∈ Z[i]. We
would like to find β ∈ Z[i] such that N(β) = 2n. By multiplicativity of the norm,
if γ ∈ Z[i] is such that N(γ) = 2, then we can take β = γα. And we know that
N(1 + i) = 2, so we take β = (1 + i)α = (1 + i)(a+ bi) = (a− b) + (a+ b)i. We thus
find that 2n = c2 + d2 where c = a− b, d = a+ b.

These were the only mandatory exercises, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I
highly recommend that you try to solve them for practice, and you are
welcome to email me if you have questions about them. The solutions
will be made available with the solution to the mandatory exercises.
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Exercise 4 How many squares?

1. Find an integer > 2000 which is the sum of 3 squares, but not of 2 squares.

2. Find an integer > 2000 which is the sum of 4 squares, but not of 3 squares.

Solution 4

1. We know that if there is a prime p ≡ −1 (mod 4) such that p | n but p2 - n,
then n won’t be a sum of 2 squares. So let us take p = 3 for instance. We can
take n = 2001: since the sum of digits is 3, 3 | n but 9 - n, so n is not a sum
of 2 squares.

Besides, if we had n = 4a(8b + 7), then necessarily a = 0 since n is odd. But
n ≡ 1 6≡ 7 (mod 8), so n is not of the form 4a(8b+ 7). As a result, n is a sum
of 3 squares.

2. Since every integer is a sum of 4 squares, it suffices to take an n of the form
4a(8b+ 7) for any a and b. We can go the easy way and take a = 0, so we just
need n ≡ 7 (mod 8). So for instance n = 2007 works.

Exercise 5 The meaning of divisibility

Let a, b ∈ Z. We may also view a and b as elements of Z[i]. Write a |Z b if a divides b
when we view them as elements of Z, and a |Z[i] b if a divides b when we view them
as elements of Z[i].

Prove that in fact, a |Z b iff. a |Z[i] b.

Solution 5

We prove both implications.
First of all, if a |Z b, then b = ac for some c ∈ Z. Thus c ∈ Z[i], so a |Z[i] b.
Conversely, suppose that a |Z[i] b. This means that b = aγ for some γ ∈ Z[i]. We

now distinguish two cases. If a 6= 0, then we have γ = b/a ∈ Q, so γ ∈ Z[i]∩Q = Z,
which proves that a |Z b. And if a = 0, then b = aγ = 0 as well, so again a |Z b since
b = ac for one, and in fact any, c ∈ Z.

Exercise 6 Forcing a common factor

Let α, β ∈ Z[i].

1. Prove that N
(

gcd(α, β)
)
| gcd

(
N(α), N(β)

)
.

2. Explain why we can have N
(

gcd(α, β)
)
< gcd

(
N(α), N(β)

)
.

3. Suppose now that gcd
(
N(α), N(β)

)
is a prime p ∈ N. Prove that p 6≡ 3

(mod 4).

4. Still assuming that that gcd
(
N(α), N(β)

)
is a prime p ∈ N, prove that either

α and β are not coprime, or α and β̄ are not coprime (or both).
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5. Suppose more generally that gcd
(
N(α), N(β)

)
is a integer n > 2, which we no

longer assume to be prime. Is it true that either α and β are not coprime, or α
and β̄ are not coprime (or both)? Is it true that at least one of N

(
gcd(α, β)

)
and N

(
gcd(α, β̄)

)
is n?

Solution 6

1. Since the norm is multiplicative, we know that if δ | α then N(δ) | N(α).
As a result, if δ | α and δ | β, then N(δ) | N(α) and N(δ) | N(β), so
N(δ) | gcd

(
N(α), N(β)

)
. This applies in particular to δ = gcd(α, β), whence

the result.

2. Let p be a prime such that p ≡ 1 (mod 4), for instance p = 5. Then we know
that in Z[i], p decomposes as p = ππ̄, where π and π̄ are both irreducible of
norm p and are not associate to each other. Let us take α = π, β = π̄. Then
since they are irreducible and not associate to each other, they are coprime,
so N

(
gcd(α, β)

)
= 1, even though gcd

(
N(α), N(β)

)
= gcd(p, p) = p.

3. From gcd
(
N(α), N(β)

)
= p, we infer that possibly after swapping α and β

we must have p | N(α) but p2 - N(α). By considering the factorization of α
in Z[i], we deduce that α is divisible by an irreducible π of norm p. No such
irreducible exists if p ≡ −1 (mod 4), whence the result.

4. We have p | N(α), so α must be divisible by an irreducible π dividing p in
Z[i]. Similarly, there is an irreducible π′ | p such that π′ | β. But if p = 2,
then there is only one π | p up to invertibles, so π′ must be associate to π
so that π divides both α and β, whereas if p ≡ 1 (mod 4) (which is the only
other possible case by the previous question), then π′ is associate either ot π,
in which case π divides both α and β again, or to π̄, in which case π divides
both α and β̄.

5. Let p | n be a prime. Then we have again p | N(α) and p | N(β), so as in the
previous question we find an irreducible of norm p which divides both α and
either β or β̄ (or both), so the answer to the first question is yes.

However, the answer to the second question is no. Consider for instance two
distinct primes `, p ∈ N which are both ≡ 1 (mod 4), so that they decompose
as ` = λλ̄, p = ππ̄ in Z[i], and the irreducibles λ, λ̄, π, π̄ are pairwise coprime,
and take α = λπ, β = λπ̄, so that β̄ = λ̄π. Then we have N(α) = N(β) = `p,
so that gcd

(
N(α), N(β)

)
= `p, but gcd(α, β) = λ and gcd(α, β̄) = π both

have norm < `p (` for the former, p for the latter).

Exercise 7 Integers of the form x2 + xy + y2 (difficult)

Let ω = eπi/3 = 1+i
√
3

2
∈ C, and let Z[ω] = {a+ bω | a, b ∈ Z}. Note that ω satisfies

ω2 − ω + 1 = 0 and ω3 = −1.
We define the norm of an element α ∈ Z[ω] by N(α) = αᾱ = |α|2.

1. Check that Z[ω] is closed under addition, subtraction, and multiplication.
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2. Prove that N(a + bω) = a2 + ab + b2. Deduce that the set of integers of the
form x2 + xy + y2, x, y ∈ Z, is stable under multiplication.

3. Prove that an element of Z[ω] is invertible iff. its norm is 1. Deduce that the
set of units of Z[ω] is

Z[ω]× = {ω, ω2, ω3 = −1, ω4, ω5, ω6 = 1}.

4. Prove that Euclidean division is possible in Z[ω].

Hint: {1, ω} is an R-basis of C.

5. Deduce that we have unique factorisation into irreducibles in Z[ω].

6. Let p 6= 3 be a prime. Prove that if p 6= 2, then
(−3
p

)
=
(
p
3

)
, and deduce that

the equation x2 + x+ 1 = 0 has solutions in Z/pZ iff. p ≡ 1 (mod 3).

7. Prove that the primes p ∈ N decompose in Z[ω] as follows:

(a) if p = 3, then 3 = ω5(1 + ω)2 (note that ω5 is a unit),

(b) if p ≡ 1 (mod 3), then p = ππ̄, where π ∈ Z[ω] is irreducible and has
norm p,

(c) if p ≡ −1 (mod 3), then p remains irreducible in Z[ω].

Hint: Prove that if p = a2 + ab + b2, then at least one of a and b is not
divisible by p.

8. What are the irreducibles in Z[ω]?

9. Deduce from the previous questions that an integer n ∈ N is of the form
x2 + xy + y2, x, y ∈ Z iff. for all primes p ≡ −1 (mod 3), the p-adic valuation
vp(n) is even.

10. Find a formula for the number of pairs (x, y), x, y ∈ Z such that x2+xy+y2 = n
in terms of the factorization of n in Z.

Solution 7

1. It is clear that Z[ω] is stable under addition and subtraction, and for multipli-
cation we have

(a+ bω)(c+ dω) = ac+ (ad+ bc)ω + bd(ω − 1) = (ac− bd) + (ad+ bc+ bd)ω

since ω2 = ω−1, so Z[ω] is a ring. Besides, the product of 2 nonzero complexes
is nonzero, so Z[ω] is indeed a domain.

2. Since ω ∈ C \R, the complex roots of the polynomial x2 − x+ 1 are ω and ω̄,
so we have ω + ω̄ = 1 and ωω̄ = 1. Therefore,

N(a+ bω) = (a+ bω)(a+ bω̄) = a2 + ab(ω + ω̄) + b2ωω̄ = a2 + ab+ b2.

Besides, since clearly N(αβ) = N(α)N(β), we deduce that the set of integers
of the form a2 + ab+ b2, a, b ∈ Z, is stable under multiplication.
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3. If α is invertible, then N(α)N(α−1) = N(1) = 1, whence N(α) = 1 since
norms are positive integers. Conversely, if N(α) = 1, then α is invertible of
inverse ᾱ. Therefore, the invertibles are the a+bω with a2 +ab+b2 = 1. From

a2 + ab+ b2 = (a+ b/2)2 +
3

4
b2

we see that |b| 6 1.

For b = −1, we must have a = 0 or 1, for b = 0, we must have a = ±1, and
for b = 1, we must have a = 0 or −1, so there are exactly 6 invertibles. But ω
is invertible since 1 = ωω̄ = ω(1−ω), so all powers of ω are a also invertibles,
and since ω = eπi/3, the sequence of powers of ω is periodic of period exactly
6, so all 6 invertibles show up this way.

4. Observe first that if we extend the norm to all of C by setting N(z) = zz̄, we
have

N(λ+ µω) = λ2 + λµ+ µ2 (?)

for all λ, µ ∈ R.

Let now α, β ∈ Z[ω], β 6= 0; we want to show that there exist γ, ρ ∈ Z[ω] with
α = βγ + ρ and N(ρ) < N(β).

We have α/β ∈ C, so since {1, ω} is an R-basis of C there are λ, µ ∈ R such
that α/β = λ + µω. Let l,m ∈ Z be such that |l − λ| 6 1

2
and |m − µ| 6 1

2
,

and let γ = l+mω ∈ Z[ω] and ρ = α−βγ ∈ Z[ω]. Then N(α
β
−γ) 6 1

4
+ 1

4
+ 1

4

by (?), so

N(ρ) = N(α− βγ) = N(
α

β
− γ)N(β) 6

3

4
N(β) < N(β).

5. The proof is the same as for Z and Z[i]: now that we have euclidian division
available, we can prove Bézout, and deduce Gauss’s and Euclid’s lemmas, and
then the uniqueness of factorization from there.

6. (Compare with exercise 4 of the previous sheet) Suppose first that p 6= 2, 3.
The we have(

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)p

′
(−1)

3−1
2
p′
(p

3

)
=
(p

3

)
which is +1 if p ≡ 1 (mod 3), and −1 if p ≡ −1 (mod 3). Now, the discrimi-
nant of x2 + x + 1 is −3, so we see that this polynomial has 2 roots mod p if
p ≡ 1 (mod 3), and none if p ≡ −1 (mod 3). Also, it has no roots mod 2, so
the conclusion is also true for p = 2.

7. (a) Checking that 3 = ω5(1 + ω)2 is a mere matter of calculation.

(b) If p ≡ 1 (mod 3), then by the previous question there exists x ∈ Z such
that p | (x2 + x + 1) = (x − ω)(x − ω̄) = (x − ω)(x + 1 − ω). Both of
these fators lie in Z[ω], and p clearly does not divide them, so by Euclid’s
lemma p is not irreducible, so we may write p=ππ′ with π, π′ ∈ Z[ω]
non-invertibles. Since N(p) = p2, we must haveN(π) = N(π′) = p, so π
and π′ are irreducible and π′ = π̄.

7



(c) If p ≡ −1 (mod 3) were reducible in Z[ω], then since N(p) = p2, it would
factor as a product of two irreducibles of norm p. Let a + bω be one
of them; then we would have p = N(a + bω) = a2 + ab + b2. If a and
b were both divisible by p, then a2 + ab + b2 would be divisible by p2,
which is absurd. But if p - a, then we get x2 + x + 1 = 0 in Z/pZ
with x = ba−1 mod p, which contradicts the previous question. Same
thing if p - b. So we have reached a contradiction, which shows that p is
irreducible.

8. Every α ∈ Z[ω] divides its norm, which lies in N and is thus a product of
prime numbers. We have determined how these prime numbers decompose
in Z[ω] in the previous question, so we have found all irreducibles: they are
1 +ω (norm 3), the primes p ≡ −1 (mod 3) (norm p2), and the two conjugate
irreducibles dividing each prime p ≡ 1 (mod 3) (and we can check that these
two are never associate to each other by testing all 6 invertibles, but this is
tedious), which have norm p.

9. This is now the same proof as for Z[i], taking what we know about the irre-
ducibles and their norms into account.

10. By the same logic as in class, we find that this number is{
6
∏

p≡1(3)(1 + vp(n)), if vp(n) is even for all p ≡ −1 mod 3,

0, else

(note that this time we have 6 units).
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