
Rings, fields, and modules
Exercise sheet 2

https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU22102/index.html

Version: March 5, 2021

Email your answers to aylwarde@tcd.ie by Friday March 5, 4PM.

Exercise 1 The characteristic of a ring (100 pts)

Let R be a commutative ring. We note that that there exists one and only one
ring morphism from Z to R: indeed, if f is such a morphism, then f(0Z) = 0R,
f(1Z) = f(1R), and so f(2Z) = f(1Z + 1Z) = f(1Z) + f(1Z) = 1R + 1R, and
more generally f(n) = 1R + · · ·+ 1R︸ ︷︷ ︸

n

for all n ≥ 0; and finally f(−n) = −f(n),

so f(n) = −1R − · · · − 1R︸ ︷︷ ︸
|n|

for all n < 0, so f is completely determined; and we

check easily that this f is indeed a ring morphism (you are not required to do this
in this exercise). We denote this unique morphism from Z to R by fR.

1. (10 pts) Prove that there exists a unique n ∈ Z, n ≥ 0, such that Ker fR = nZ.
You may use without proof the fact that the ring Z is principal.

This n is called the characteristic of the ring R; we denote it by charR.

2. (15+5 pts) Let R be a ring of characteristic c. Prove that R contains a subring
isomorphic to Z/cZ. What does this mean when c = 0?

3. Determine the characteristic of the following rings:

(a) (5 pts) C,

(b) (5 pts) Z/nZ, in terms of n ∈ Z,

(c) (5 pts) R[x], in terms of charR,

(d) (10 pts) R× S, where S is another commutative ring, in terms of charR
and charS.

4. (10 pts) Prove that if R is a domain, then charR is either 0 or a prime number.

5. (10 pts) Let R and S be commutative rings. Prove that if there exists a
morphism from R to S, then charR is a multiple of charS.

6. (5 pts) Find all ring morphisms from Z/2021Z to C.

7. (15+5pts) Prove that there are no ring morphisms from Q to Z; comment.
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Solution 1

1. Since fR is a morphism, its kernel is an ideal of Z. As Z is principal, there
exists n ∈ Z such that Ker fR = nZ. Besides, it is clear that (−n)Z = nZ, so
replacing n with −n if needed, we may assume n ≥ 0; this proves the existence
part of the question.

For uniqueness, suppose that Ker fR = nZ = mZ for non-negative n,m ∈ Z.
Then n ∈ nZ = mZ so n is a multiple of m, so n ≥ m as they are both
non-negative; similarly m ∈ nZ so m ≥ n, whence m = n.

Note that we have actually proved that in general, nZ = mZ iff. m = ±n; we
will generalise this observation in the lectures when we introduce the concept
of associate elements in a domain.

Also note that charR is the smallest n ≥ 1 such that 1R + · · ·+ 1R︸ ︷︷ ︸
n

= 0R, or

0 if no such n exists; this definition of the characteristic can be used to obtain
alternative proofs to most of the next questions — exercise!

2. The isomorphism theorem applied to fR : Z −→ R proves that Im fR is isomor-
phic to Z/Ker fR, which is Z/cZ by definition of the characteristic. Besides,
we know that Im fR is a subring of R, whence the result.

If c = 0, then Z/0Z = Z/{0} ' Z as can be seen from the definition of
a quotient ring, or (more pedantically maybe) by applying the isomorphism
theorem to the identity map from Z to itself, so the conclusion is that a right
of characteristic 0 must contain a copy of Z.

3. (a) The identity map from Z to C is clearly a morphism, so it must agree
with fC. Besides, it is injective, so its kernel is {0}; thus charC = 0 (and
indeed C contains a copy of Z).

(b) The canonical projection from Z to its quotient Z/nZ us a morphism, so
it must agree with fZ/nZ. Therefore Ker fZ/nZ = nZ, so charZ/nZ = |n|
(and indeed Z/nZ contains, or rather agrees with, a copy of Z/|n|Z =
Z/nZ).

(c) The embedding f : R −→ R[x] which views elements of R as constant
polynomials is clearly a morphism, so fR[x] must agree with the morphism
f ◦ fR. Thus for all n ∈ Z, fR[x] = 0 iff. f(fR(n)) = 0 iff. fR(n) = 0 as f
is clearly injective, so Ker fR[x] = Ker fR, whence charR[x] = charR.

(d) It is clear that fR×S is given by n 7−→
(
fR(n), fS(n)

)
. Therefore Ker fR×S =

Ker fR ∩Ker fS = (charR)Z ∩ (charS)Z, which agrees with lcm(charR, charS)Z
by a question in the first assignment (see also the chapter 2 lecture on
gcd’s and lcm’s in a UFD). Thus charR× S = lcm(charR, charS).

4. We prove the contrapositive. Suppose that charR is neither 0 nor a prime
number. If charR = 1, 1R = f(1Z) = 0R, so R is the zero ring, which is not
considered as a domain. Else, charR ≥ 2 is not prime, so we have charR = ab
with integers a, b such that 1 < a, b < charR. Then fR(a)fR(b) = fR(ab) =
fR(charR) = 0R, whereas fR(a) 6= 0R as a 6∈ Ker fR since a cannot be a
multiple of charR as 0 < a < charR, and similarly fR(b) 6= 0R. So in R
we have two nonzero elements fR(a), fR(b) which multiply to 0R, which shows
that R is not a domain.
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5. Let f : R −→ S be a morphism. Then f ◦ fR : Z −→ R −→ S is a morphism,
so it must agree with fS. Thus fS(charR) = f(fR(charR)) = f(0R) = 0S,
whence charR ∈ Ker fS = (charS)Z, which means that charR is a multiple
of charS.

6. If we had a morphism f : Z/2021Z −→ C, then by the previous question
2021 = charZ/2021Z would be a multiple of 0 = charC, absurd. Therefore
there are no such morphisms.

7. Suppose f : Q −→ Z is a morphism. Then 2f(1/2) = f(1) = 1, which is
absurd as there are no n ∈ Z such that 2n = 1. Therefore there are no such
morphisms.

As charZ = charQ = 0, this proves that the converse to the statement estab-
lished in question 5 does not hold.

This was the only mandatory exercise, that you must submit before
the deadline. The following exercise is not mandatory; it is not worth any
points, and you do not have to submit it. However, I highly recommend
that you try to solve it for practice, and you are welcome to email me
if you have questions about it. The solution will be made available with
the solution to the mandatory exercise.

Exercise 2 Ideals in a quotient

In this exercise, whenever f : X −→ Y is a map between two sets, for each sub-
set S ⊆ X we define f(S) = {f(s), s ∈ S} ⊆ Y ; and for each subset T ⊆ Y , we
define f−1(T ) = {x ∈ X | f(x) ∈ T}.

1. Let R be a commutative nonzero ring. Prove that R is a field iff. the only
ideals of R are {0} and R.

2. Let f : R −→ S be a morphism between commutative rings.

(a) Prove that if f is surjective, then for every ideal I of R, f(I) is an ideal
of S.

(b) Give a counter-example showing that this statement is no longer true if
f is not surjective.

3. Let again f : R −→ S be a morphism between commutative rings.

(a) Prove that if J is an ideal of S, then f−1(J) is an ideal of R.

(b) Which statement proved in class do we recover by taking J = {0}?

4. Let now R be a commutative ring, I an ideal of R, and f : R −→ R/I the
canonical projection.
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(a) Prove that the maps

Φ : {Ideals of R containing I} −→ {Ideals of R/I}
J 7−→ f(J)

and

Ψ : {Ideals of R/I} −→ {Ideals of R containing I}
J 7−→ f−1(J)

are well-defined, i.e. that their images land where their definitions claim
they land.

(b) Prove that Φ and Ψ are inclusion-preserving bijections which are inverses
of each other.

5. Let R be a commutative ring, and let I be an ideal of R. We say that I is
maximal if I 6= R and if there are no ideals J of R such that I ( J ( R (This
definition occurs in the lecture on prime and maximal ideals, but you need not
study this lecture to solve this question). By using the previous question(s),
prove that R/I is a field iff. I is maximal.

NB This statement also occurs in the lecture on prime and maximal ideals, but
the proof that we give in this exercise is a different one.

Solution 2

1. If R is a field, then every nonzero element is invertible, and therefore every
ideal not reduced to {0} contains an invertible element and therefore agrees
with R. Conversely, if R is not a field, then there exists 0 6= r ∈ R which is
not invertible; then the ideal (r) of R is not {0} since it contains r 6= 0, and it
is not R either, for else we would have 1 ∈ (r) whence 1 = rx for some x ∈ R,
contradicting our assumption that r is not invertible.

2. (a) Let I be an ideal of R. By definition, the elements of f(I) are the f(i)
for i ∈ I. In particular, 0 = f(0) ∈ f(I) as 0 ∈ I. f(I) is also closed
by sum, since if j1, j2 ∈ f(I), then j1 = f(i1) and j2 = f(i2) for some
i1, i2 ∈ I, and then f(i1) + f(i2) = f(i1 + i2) ∈ f(I) as I is closed
by sum. Finally, let j ∈ f(I), and let s ∈ S. We have j = f(i) for
some i ∈ I, and also s = f(r) for some r ∈ R as f is surjective. Thus
sj = f(r)f(i) = f(ri) ∈ f(I) as I is an ideal.

(b) Consider the identity map from Z to Q (or R, or C, it does not matter).
Z is an ideal of Z, yet the image of this ideal, which is still Z, is not an
ideal of Q since the only ideals of Q are {0} and Q as Q is a field.

3. (a) Let I = f−1(J). We have 0 ∈ I, because f(0) = 0 ∈ J . Let i1, i2 ∈ I;
then f(i1 + i2) = f(i1) + f(i2) ∈ J since f(i1), f(i2) ∈ J by definition of
I, so i1 + i2 ∈ I, and I is closed under sum. Finally, let i ∈ I¡ and let
r ∈ R; then f(ri) = f(r)f(i) ∈ J as f(r) ∈ S and f(i) ∈ J , so ri ∈ I,
which shows that I is an ideal of R.

(b) {0} is certainly an ideal of S, and we have

f−1({0}) = {r ∈ R|f(r) ∈ {0}} = {r ∈ R|f(r) = 0} = Ker f,

so we recover the fact that Ker f is an ideal of R.
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4. (a) The canonical projection f is surjective by definition, so by question 2a,
if J is an ideal of R, then f(J) is an ideal of R/I.

By question 3a, if J is an ideal of R/I, then f−1(J) is an ideal of R;
besides, if i ∈ I, then f(i) = 0 by definition of f , so f(i) ∈ J as J 3 0 is
an ideal, so i ∈ f−1(J); this shows that indeed I ⊆ f−1(J).

(b) This is typically the kind of question where you should take a deep breath,
patiently unroll the definitions, and calmly prove double-inclusions.

Let J be an ideal of R containing I, and let J ′ = ΨΦ(J) = f−1
(
f(J)

)
.

If j ∈ J , then f(j) ∈ f(J), so j ∈ f−1
(
f(J)

)
= J ′, whence J ⊆ J ′.

Conversely, let j′ ∈ J ′; then f(j′) ∈ f(J), so there exists j ∈ J such that
f(j′) = f(j). Thus f(j′ − j) = f(j′) − f(j) = 0, so j′ = j ∈ Ker f = I,
so j′ = j + i for some i ∈ I. As I ⊆ J , this implies that j′ ∈ J , whence
J ′ ⊆ J . In conclusion, J = J ′.

Let now J be an ideal of R/I; then

ΦΨ(J) = f
(
f−1(J)

)
= f

(
{x ∈ R | f(x) ∈ J}

)
= {f(x) | x ∈ R, f(x) ∈ J}

which is clearly contained in J . Conversely, if j ∈ J , then j ∈ R/I so
is of the form x for some x ∈ R, which is such that f(x) = x = j ∈ J ,
so that x ∈ f−1(J); therefore j = f(x) ∈ f

(
f−1(J)

)
, which proves the

reverse containment and hence the equality J = f
(
f−1(J)

)
.

Finally, it is clear form the definition of f and f−1 on subsets that these
maps preserve the inclusion between subsets.

5. The previous question shows that the ideals of R/I may be identified with the
ideals of R which contain I.

If I is maximal, the only such ideals are I and R, so the only ideals of R/I
are f(I) = {0} and f(R) = R/I, so R/I is a field by question 1.

Conversely, still by question 1, if R/I is a field, then it only has 2 ideals, so
there are only 2 ideals of R which contain I; as I and R are such ideals, this
must be all of them, which means that I is maximal.
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