MAU22102

Rings, Fields, and Modules 1 - Rings

Nicolas Mascot mascotn@tcd.ie
Module web page

Hilary 2020-2021
Version: February 5, 2021

Trinity College Dublin
Coláiste na Tríonóide, Baile Átha Cliath
The University of Dublin

Rings: Definitions, basic properties

Reminder: groups

Definition (Group)

A group is a set G equipped with a law (=operation)

$$
\begin{array}{rlc}
G \times G & \longrightarrow G \\
(x, y) & \longmapsto x \cdot y
\end{array}
$$

such that:

- (Associativity) For all $x, y, z \in G,(x \cdot y) \cdot z=x \cdot(y \cdot z)$ $\rightsquigarrow x \cdot y \cdot z \in G$ makes sense.
- (Identity) There exists an identity element $e \in G$ which satisfies: for all $x \in G, x \cdot e=e \cdot x=x$.
- (Inverses) Every $x \in G$ has an inverse $y \in G$ which satisfies: $x \cdot y=y \cdot x=e$.

Reminder: groups

Remark

- Technically, we should write the group as (G, \cdot) so as to specify the law.
- $G \neq \emptyset$, because $e \in G$. So the smallest (and most boring) possible group is $G=\{e\}$.
- The identity e is unique: If $e^{\prime} \in G$ is another identity, then $e=e \cdot e^{\prime}=e^{\prime}$.
- Similarly, for each $x \in G$, the inverse of x is unique: If $y, y^{\prime} \in G$ are inverses of x, then

$$
y=y \cdot e=y \cdot x \cdot y^{\prime}=e \cdot y^{\prime}=y^{\prime}
$$

\rightsquigarrow we denote this unique inverse by x^{-1}.

Reminder: groups

Definition (Abelian group)

We say that a group G is Abelian if $x \cdot y=y \cdot x$ for all $x, y \in G$.

In an Abelian group, the operation is usually denoted by + instead of \cdot, and inverses by $-x$ instead of x^{-1}.

Example
 $(\mathbb{Z},+)$ is an Abelian group.

Rings: definition

Definition (Ring)

A ring is a set R equipped with two laws:

$$
\begin{aligned}
R \times R & \longrightarrow R \\
(x, y) & \left.\longmapsto x+y \quad \text { and } \quad \begin{array}{rl}
R \times R & \longrightarrow R \\
(x, y) & \longmapsto x \times y=x y
\end{array} . \begin{array}{l}
\\
r x
\end{array}\right)
\end{aligned}
$$

such that:

- (Addition) $(R,+)$ is an Abelian group. The identity element for + is written $0 \in R$. The inverse of $x \in R$ for + is called the negative of x and written $-x$.
- (Associativity) For all $x, y, z \in R,(x y) z=x(y z)$ $\rightsquigarrow x y z \in R$ makes sense.
- (Identity) There exists an identity element $1 \in R$ which satisfies: for all $x \in R, x 1=1 x=x$.
- (Distributivity) For all $x, y, z \in R$, we have $x(y+z)=(x y)+(x z)$ and $(x+y) z=(x z)+(y z)$.

Rings: examples

Example

- $(\mathbb{Z},+, \times)$ is actually a ring.
- Let $n \in \mathbb{N}$. The set $\mathcal{M}_{n}(\mathbb{R})$ of $n \times n$ matrices with coefficients in \mathbb{R} is a ring; its 0 is the matrix full of zeros, and its 1 is the identity matrix I_{n}.
- We could redefine the multiplication on $\mathcal{M}_{n}(\mathbb{R})$ by multiplying matrices coefficient-wise
\rightsquigarrow new ring structure on the same set $\mathcal{M}_{n}(\mathbb{R})$, with the same 0 , but now the 1 is the matrix full of ones.

Rings: more examples

Example

- If R and S are rings, then their product

$$
R \times S=\{(r, s) \mid r \in R, s \in S\}
$$

endowed with the laws
$(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r+r^{\prime}, s+s^{\prime}\right), \quad(r, s)\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)$,
is a ring whose 0 is $\left(0_{R}, 0_{S}\right)$ and whose 1 is $\left(1_{R}, 1_{S}\right)$.

- If R is a ring, then we can define the ring

$$
R[x]=\left\{r_{n} x^{n}+\cdots r_{1} x+r_{0} \mid r_{0}, r_{1}, \cdots, r_{n} \in R, n \in \mathbb{N}\right\}
$$

of polynomials with coefficients in R.

Rings: basic properties

Remark

- $R \neq \emptyset$, because $0,1 \in R$. We do not require $0 \neq 1$, more on this later.
- 0 is unique as the identity of $(R,+)$. Similarly, $1 \in R$ is unique (same proof, although (R, \times) is not a group in general).
- Negatives are unique, as inverses for a group law.

Consequences of distributivity

Proposition

Let R be a ring. Then $x 0=0 x=0$ for all $x \in R$, and $(-x) y=-(x y)=x(-y)$ for all $x, y \in R$.

Proof.

Let $x, y \in R$. Then
$0 x=0 x+x-x=0 x+1 x-x=(0+1) x-x=1 x-x=x-x=0 ;$
similarly $x 0=x 0+x-x=x 0+x 1-x=x-x=0$.
Therefore, $(-x) y+x y=(-x+x) y=0 y=0$, so $(-x) y=-(x y)$ since negatives are unique.
Similarly, $x(-y)=-x y$ because
$x(-y)+x y=x(y+-y)=x 0=0$.

Consequences of distributivity

Proposition

Let R be a ring. Then $x 0=0 x=0$ for all $x \in R$, and $(-x) y=-(x y)=x(-y)$ for all $x, y \in R$.

Corollary (Zero ring)
If $0=1$ in R, then $R=\{0\}$.

Proof.

If $0=1$, then for all $x \in R, x=x 1=x 0=0$.

Commutative rings

Definition (Commutative ring)

We say that a ring R is commutative if

$$
x y=y x \text { for all } x, y \in R .
$$

Remark

By definition of a ring, + is always commutative.

Example

The ring \mathbb{Z} is commutative.
Counter-example
The ring $\mathcal{M}_{n}(\mathbb{R})$ is not commutative as soon as $n \geq 2$.
In this module, we will mostly focus on commutative rings.

The binomial formula

Theorem

In a commutative ring R, we have the binomial formula

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

for all $x, y \in R$ and $n \in \mathbb{N}$.

Proof.

When we expand $(x+y)^{n}=(x+y)(x+y) \cdots(x+y)$, we get a sum of terms such as xxyxy \cdots. As the ring is commutative, we may rearrange them in the form $x^{k} y^{\prime}$, where $k+I=n$, so $I=n-k$. Since + is also commutative, we can gather the terms $x^{k} y^{n-k}$ which have the same k. The number of times we get $x^{k} y^{n-k}$ is by definition $\binom{n}{k}$.

Domains \& Fields

Invertible elements

Definition

An element $x \in R$ is invertible if there exists $y \in R$ such that $x y=1=y x$. This y is then unique, and denoted by x^{-1}.
The set of invertibles of R is written R^{\times}.

Example

- $\mathbb{Z}^{\times}=\{1,-1\}$.
- $\mathcal{M}_{n}(\mathbb{R})^{\times}=G L_{n}(\mathbb{R})$.

We always have $1 \in R^{\times}$. In fact, R^{\times}is a group under \times, with identity 1 , which is Abelian if R is commutative.
The 0 of R is never invertible, unless $R=\{0\}$: if 0 were invertible, then $1=00^{-1}=0$.

Fields

Definition (Field)

A field is a commutative ring F such that $F^{\times}=F \backslash\{0\}$.

Example

$\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
If F is a field, then so is the rational fraction field $F(x)=\left\{\left.\frac{P(x)}{Q(x)} \right\rvert\, P(x), Q(x) \in F[x], Q(x) \neq 0\right\}$.

Counter-example

\mathbb{Z} is not a field, since only 1 and -1 are invertible.
The zero ring $R=\{0\}$ is not a field, since
$R \backslash\{0\}=\emptyset \neq R^{\times}=R$.

Fields

Definition (Field)
 A field is a commutative ring F such that $F^{\times}=F \backslash\{0\}$.

Remark (Not examinable)

A "non-commutative field" is called a division algebra.
Example: the Hamilton quaternions.

Domains

Definition (Domain)

A domain (a.k.a integral domain) is a nonzero commutative ring D such that for all $x, y \in D$,

$$
x y=0 \text { implies } x=0 \text { or } y=0
$$

Counter-example

- If R and S are nonzero rings, then $R \times S$ is not a domain, since $x=\left(1_{R}, 0_{S}\right), y=\left(0_{R}, 1_{S}\right) \in R \times S$ are such that $x y=\left(0_{R}, 0_{S}\right)=0$ but $x, y \neq 0$.
- The set F of continuous functions $\mathbb{R} \longrightarrow \mathbb{R}$, equipped with point-wise operations $(f+g)(x)=f(x)+g(x)$, $(f g)(x)=f(x) g(x)$ for all $f, g \in F$ and $x \in \mathbb{R}$, is a commutative ring which is not a domain either: consider f which vanishes on $(-\infty, 1]$, and g which vanishes on $[-1,+\infty)$.

Domains

Definition (Domain)

A domain (a.k.a integral domain) is a nonzero commutative ring D such that for all $x, y \in D$,

$$
x y=0 \text { implies } x=0 \text { or } y=0
$$

Proposition

Every field is a domain.

Proof.

Let F be a field, and $x, y \in F$ be such that $x y=0$. If $x \neq 0$, then x is invertible, whence $y=1 y=x^{-1} x y=x^{-1} 0=0$.

Counter-example

\mathbb{Z} is a domain which is not a field.

Polynomials over a domain

Proposition

If D is a domain, then so is the polynomial ring $D[x]$, and we have the rule $\operatorname{deg}(P Q)=\operatorname{deg} P+\operatorname{deg} Q$ for all $P(x), Q(x) \in D[x]$.

Proof.

Let $P(x), Q(x) \in D[x]$, both non zero. We can write

$$
P(x)=a_{n} x^{n}+\text { lower terms },
$$

with $a_{n} \in D, a_{n} \neq 0$, so that $n=\operatorname{deg} P$; similarly

$$
Q(x)=b_{m} x^{m}+\text { lower terms }
$$

$b_{m} \neq 0, m=\operatorname{deg} Q$. Then

$$
P(x) Q(x)=a_{n} b_{m} x^{n+m}+\text { lower terms }
$$

and $a_{n} b_{m} \neq 0$ since D is a domain. Therefore $P Q \neq 0$, and has degree $n+m$.

Classification of commutative rings

So far, we have
Fields \subsetneq Domains \subsetneq Commutative rings.
Commutative algebra is the branch of mathematics that refines this classification. A ring can be Noetherian, Artinian, a UFD, a PID, Euclidean, integrally closed, local, catenary, Cohen-Macaulay, Gorenstein, excellent, Japanese, ...

We will study some of this concepts in the next chapter.

From now on, in the rest of this module, we only consider commutative rings.

Subrings

Subrings

Definition (Subring)

Let R be a ring. A subring of R is a subset $S \subseteq R$ which contains 1_{R} and is closed under,+- , and \times.

Example

- \mathbb{Z} is a subring of \mathbb{Q}.
- Let R be the ring of continuous functions $\mathbb{R} \longrightarrow \mathbb{R}$. Then smooth functions form a subring of R.

Counter-example

- \mathbb{N} is not a subset of \mathbb{Z}, since it is not closed under - .
- Given two nonzero rings R and S, the subset
$R \times\{0\}=\{(r, 0) \mid r \in R\}$ of $R \times S$ is closed under + , - , and \times, but it is not a subring since it does not contain $1=\left(1_{R}, 1_{S}\right)$.

Operations on subrings

Proposition

An intersection of subrings is a subring.

Proof.

Let $S_{1}, S_{2}, \cdots, S_{i}, \cdots$ be subrings, and $S=\bigcap_{i} S_{i}$.
For all $i, 1 \in S_{i}$ because S_{i} is a subring, so $1 \in S$.
Let $x, y \in S$. Then for all $i, x, y \in S_{i}$, so $x+y \in S_{i}$ because S_{i} is a subring; thus $x+y \in S$. Similarly for - and x.

Operations on subrings

Definition

The subring generated by a subset $S \subset R$ is the smallest subring containing S.

This is the set of elements that we can obtain with,,$+- \times$ from S and 1 ; alternatively, it is

$$
\bigcap_{\substack{\text { subring of } R \\ T \supseteq S}} T .
$$

Example

The subring of \mathbb{C} generated by i is

$$
\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}
$$

which is indeed a subring because

$$
(a+b i)\left(a^{\prime}+b^{\prime} i\right)=\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) i
$$

Ideals

Ideals

Definition (Ideal)

An ideal of a ring R is a subset $I \subset R$ such that:

- $I \neq \emptyset$,
- For all $i, j \in I, i+j \in I$,
- For all $i \in I$ and $r \in R, r i \in I$.

Example

If F is the ring of continuous functions $\mathbb{R} \longrightarrow \mathbb{R}$ and if we fix $x_{0} \in \mathbb{R}$, then the set of elements of F that vanish at $x=x_{0}$ is an ideal of F.

Remark

If I is an ideal, then $(I,+)$ is an Abelian group. Indeed, let
$i \in I$; then $-i=(-1) i \in I$, so $0=i+-i \in I$.
So the smallest ideal of R is $I=\{0\}$, and the largest is $I=R$.

Proper ideals

Lemma

Let $I \subseteq R$ be an ideal. Then

$$
I=R \Longleftrightarrow I \ni 1 \Longleftrightarrow I \cap R^{\times} \neq \emptyset .
$$

Proof.
If I contains an invertible $u \in R^{\times}$, then $1=u^{-1} u \in I$. If $I \ni 1$, then for all $r \in R, r=r 1 \in I$, so $I \supseteq R$, so $I=R$. If $I=R$, then $I \cap R^{\times}=R^{\times} \neq \emptyset$ since $R^{\times} \ni 1$.

Corollary

The only subset of R which is both a subring and an ideal is R itself.

Corollary

If R is actually a field, then its only ideals are $\{0\}$ and R itself.

Operations on ideals

Proposition

An intersection of ideals is a ideal.

Proof.

Let $I_{1}, I_{2}, \cdots, I_{k}, \cdots$ be subrings, and $I=\bigcap_{k} I_{k}$.
For all $k, 0 \in I_{k}$ because I_{k} is an ideal, so $0 \in I$.
Let $i, j \in I$. Then for all $k, i, j \in I_{k}$, so $i+j \in I_{k}$ because I_{k} is an ideal; thus $i+j \in I$.
Finally, let $i \in I$ and $r \in R$. Then for all $k, i \in I_{k}$, so $r i \in I_{k}$ because I_{k} is an ideal; thus $r i \in I$.

Operations on ideals

Proposition

An intersection of ideals is a ideal.

Definition

The ideal generated by a subset $S \subseteq R$ is the smallest ideal containing S.

This is the set of elements that we can obtain from S and 0 with,+- , and multiplication by R; alternatively, it is

$$
\bigcap_{l \text { ideal of } R} I
$$

Example

For $R=\mathbb{Z}$, the ideal generated by $\{4,10\}$ is the ideal $2 \mathbb{Z}$ of even numbers.

Operations on ideals

Proposition

If $I, J \subseteq R$ are ideals, then so is

$$
I+J=\{i+j \mid i \in I, j \in J\}
$$

Proof.

Since I and J are ideals, they contain 0 , so $0=0+0 \in I+J$. Let $x, y \in I+J$, so $x=i+j, y=i^{\prime}+j^{\prime}$, where $i, i^{\prime} \in I$, $j, j^{\prime} \in J$. Then $x+y=\left(i+i^{\prime}\right)+\left(j+j^{\prime}\right) \in I+J$. Let $x \in I+J$, so $x=i+j$ where $i \in I, j \in J$, and let $r \in R$. Then $r x=r i+r j \in I+J$ since $r i \in I, r j \in J$.

Operations on ideals

Proposition

If $I, J \subseteq R$ are ideals, then so is

$$
I J=\left\{\sum_{k=1}^{n} i_{k} j_{k} \mid n \in \mathbb{N}, i_{k} \in I, j_{k} \in J\right\}
$$

Proof.

Since I and J are ideals, they contain 0 , so $0=00 \in I J$. Let $x, y \in I J$, so x and y are sums of products of the form $i j, i \in I, j \in J$. Then $x+y$ is a longer such sum, and thus lies in $I J$.
Let $x \in I J$, so $x=\sum_{k=1}^{n} i_{k} j_{k}$, where $n \in \mathbb{N}$ and $i_{k} \in I, j_{k} \in J$ for all k, and let $r \in R$. Then
$r x=r \sum_{k=1}^{n} i_{k} j_{k}=\sum_{k=1}^{n}\left(r i_{k}\right) j_{k} \in I J$ since $r i_{k} \in I$ for all k.

Operations on ideals

Proposition

An intersection of ideals is a ideal.

Proposition

If $I, J \subseteq R$ are ideals, then so is

$$
I+J=\{i+j \mid i \in I, j \in J\}
$$

Proposition

If $I, J \subseteq R$ are ideals, then so is

$$
I J=\left\{\sum_{k=1}^{n} i_{k} j_{k} \mid n \in \mathbb{N}, i_{k} \in I, j_{k} \in J\right\}
$$

Principal ideals

Let R be a ring. For $x \in R$, write

$$
(x)=x R=\{x y \mid y \in R\} .
$$

This is the ideal of R generated by $\{x\}$.

Definition (Principal)

An ideal is principal if it is of the form $x R$ for some $x \in R$. A ring is principal if all its ideals are principal.

Example

We will prove later that \mathbb{Z} is principal, which means that every ideal of \mathbb{Z} is of the form $n \mathbb{Z}$ for some $n \in \mathbb{Z}$.

Principal ideals

Definition (Principal)

An ideal is principal if it is of the form $x R$ for some $x \in R$. A ring is principal if all its ideals are principal.

Example

We will prove later that \mathbb{Z} is principal, which means that every ideal of \mathbb{Z} is of the form $n \mathbb{Z}$ for some $n \in \mathbb{Z}$.

Counter-example

Let $R=\mathbb{Z}[x]$, and $I=\{P(x) \in R \mid P(0)$ is even $\}$. Then I is an ideal of R, but it is not principal: suppose we $G(x) \in R$ such that $I=(G)$, then as $2 \in I, 2=G H$ for some $H(x) \in R$, so $\operatorname{deg} G=\operatorname{deg} H=0$, so $G= \pm 2$. But then $P(x)=x \in I$ yet is not a multiple of G, absurd. So R is not principal.

Ring morphisms

Reminder: group morphisms

Definition (Group morphism)

A morphism from a group (G, \cdot) to a group (H, \times) is a function $f: G \longrightarrow H$ which satisfies $f\left(g \cdot g^{\prime}\right)=f(g) \times f\left(g^{\prime}\right)$ for all $g, g^{\prime} \in G$.

This automatically implies that $f\left(e_{G}\right)=e_{H}$, and that $f\left(g^{-1}\right)=f(g)^{-1}$ for all $g \in G$.

Reminder: group morphisms

Definition (Group morphism)

A morphism from a group (G, \cdot) to a group (H, \times) is a function $f: G \longrightarrow H$ which satisfies $f\left(g \cdot g^{\prime}\right)=f(g) \times f\left(g^{\prime}\right)$ for all $g, g^{\prime} \in G$.

Definition (Image)

The image of a group morphism $f: G \longrightarrow H$ is

$$
\operatorname{lm} f=\{f(g) \mid g \in G\} \subseteq H
$$

Im f is a subgroup of H.

Definition (Kernel)

The kernel of a group morphism $f: G \longrightarrow H$ is

$$
\operatorname{Ker} f=\left\{g \in G \mid f(g)=e_{H}\right\} \subseteq G
$$

Ker f is a normal subgroup of G.

Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A morphism from R to S is a function $f: R \longrightarrow S$ which satisfies:

- For all $x, y \in R, f(x+y)=f(x)+f(y)$,
- For all $x, y \in R, f(x y)=f(x) f(y)$,
- $f\left(1_{R}\right)=1_{S}$.

Remark

By the first point, f is in particular a group morphism from $(R,+)$ to $(S,+)$, so we automatically have that $f\left(0_{R}\right)=0_{S}$, and that $f(-x)=-f(x)$ for all $x \in R$.
f also induces a group morphism from $\left(R^{\times}, \times\right)$to $\left(S^{\times}, \times\right)$. Indeed, if $u \in R^{\times}$, then $f(u) f\left(u^{-1}\right)=f\left(u u^{-1}\right)=f\left(1_{R}\right)=1_{S}$, which means that $f(u)$ is invertible with inverse $f(u)^{-1}$.

Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A morphism from R to S is a function $f: R \longrightarrow S$ which satisfies:

- For all $x, y \in R, f(x+y)=f(x)+f(y)$,
- For all $x, y \in R, f(x y)=f(x) f(y)$,
- $f\left(1_{R}\right)=1_{S}$.

Example

Let R be a ring, and fix $r \in R$. Then the evaluation map

$$
\begin{aligned}
& R[x] \quad \longrightarrow R \\
& P(x) \longmapsto P(r)
\end{aligned}
$$

is a ring morphism. Indeed, given $P(x), Q(x) \in R[x]$, we do have $(P+Q)(r)=P(r)+Q(r),(P Q)(r)=P(r) Q(r)$, and $1_{R[\mid]]}(r)=1_{R}$.

Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A morphism from R to S is a function $f: R \longrightarrow S$ which satisfies:

- For all $x, y \in R, f(x+y)=f(x)+f(y)$,
- For all $x, y \in R, f(x y)=f(x) f(y)$,
- $f\left(1_{R}\right)=1_{S}$.

Remark

If $f: R \longrightarrow S$ and $g: S \longrightarrow T$ are ring morphisms, then so is $g \circ f: R \longrightarrow T$.

Image of a morphism

Definition (Image of a morphism)

The image of a ring morphism $f: R \longrightarrow S$ is

$$
\operatorname{Im} f=\{f(r) \mid r \in R\} \subseteq S
$$

Example

Let $f: \begin{array}{llc}\mathbb{Z}[x] & \longrightarrow & \mathbb{C} \\ P(x) & \longmapsto P(i)\end{array}$
If $P(x) \in \mathbb{Z}[x]$, then $P(x)=\sum_{k=0}^{n} a_{k} x^{k}$ with $a_{k} \in \mathbb{Z}$ for all k, so $P(i)=\sum_{k=0}^{n} a_{k} i^{k}$ is of the form $a+b i$ with $a, b \in \mathbb{Z}$ since $i^{k}= \pm 1$ or $\pm i$ for all k, so

$$
\operatorname{Im} f \subseteq\{a+b i \mid a, b \in \mathbb{Z}\}=\mathbb{Z}[i]
$$

Conversely, every $a+b i \in \mathbb{Z}[i]$ is reached by $P(x)=a+b x \in \mathbb{Z}[x]$, so

$$
\operatorname{Im} f=\mathbb{Z}[i],
$$

whence the notation $\mathbb{Z}[i]$.

Image of a morphism

Definition (Image of a morphism)

The image of a ring morphism $f: R \longrightarrow S$ is

$$
\operatorname{Im} f=\{f(r) \mid r \in R\} \subseteq S
$$

Proposition

If $f: R \longrightarrow S$ is a ring morphism, then $\operatorname{Im} f$ is a subring of S.

Proof.

$1_{S}=f\left(1_{R}\right) \in \operatorname{lm} f$.
Besides, if $s, s^{\prime} \in \operatorname{lm} f$, then $s=f(r), s^{\prime}=f\left(r^{\prime}\right)$ for some $r, r^{\prime} \in R$, so
$s+s^{\prime}=f(r)+f\left(r^{\prime}\right)=f\left(r+r^{\prime}\right) \in \operatorname{lm} f$, $s-s^{\prime}=f(r)-f\left(r^{\prime}\right)=f(r)+f\left(-r^{\prime}\right)=f\left(r-r^{\prime}\right) \in \operatorname{lm} f$, and $s s^{\prime}=f(r) f\left(r^{\prime}\right)=f\left(r r^{\prime}\right) \in \operatorname{Im} f$.

Image of a morphism

Definition (Image of a morphism)

The image of a ring morphism $f: R \longrightarrow S$ is

$$
\operatorname{Im} f=\{f(r) \mid r \in R\} \subseteq S .
$$

Proposition

If $f: R \longrightarrow S$ is a ring morphism, then $\operatorname{Im} f$ is a subring of S.

Remark

f is surjective $\Longleftrightarrow \operatorname{Im} f=S$.

Kernel of a morphism

Definition (Kernel of a morphism)

The kernel of a ring morphism $f: R \longrightarrow S$ is

$$
\operatorname{Ker} f=\left\{r \in R \mid f(r)=0_{s}\right\} \subseteq R .
$$

Example

Let F be the ring of continuous functions $\mathbb{R} \longrightarrow \mathbb{R}$, and fix $x_{0} \in \mathbb{R}$. Then

$$
\begin{array}{llc}
F & \longrightarrow & \mathbb{R} \\
f & \longmapsto & f\left(x_{0}\right)
\end{array}
$$

is a ring morphism, whose kernel is the subset of F formed of the functions which vanish at x_{0}.

Kernel of a morphism

Definition (Kernel of a morphism)

The kernel of a ring morphism $f: R \longrightarrow S$ is

$$
\operatorname{Ker} f=\left\{r \in R \mid f(r)=0_{s}\right\} \subseteq R
$$

Proposition

If $f: R \longrightarrow S$ is a ring morphism, then $\operatorname{Ker} f$ is a ideal of R.

Proof.

$0_{R} \in \operatorname{Ker} f$ because $f\left(0_{R}\right)=0_{S}$.
If $z, z^{\prime} \in \operatorname{Ker} f$, then $f\left(z+z^{\prime}\right)=f(z)+f\left(z^{\prime}\right)=0_{s}+0_{s}=0_{s}$,
so $z+z^{\prime} \in \operatorname{Ker} f$.
If $z \in \operatorname{Ker} f$ and $r \in R$, then $f(r z)=f(r) f(z)=f(r) 0_{S}=0_{S}$, so $r z \in \operatorname{Ker} f$.

Kernel of a morphism

Definition (Kernel of a morphism)

The kernel of a ring morphism $f: R \longrightarrow S$ is

$$
\operatorname{Ker} f=\left\{r \in R \mid f(r)=0_{s}\right\} \subseteq R
$$

Proposition

If $f: R \longrightarrow S$ is a ring morphism, then $\operatorname{Ker} f$ is a ideal of R.

Remark

f is injective $\Longleftrightarrow \operatorname{Ker} f=\{0\}$.
Indeed, \Rightarrow is clear; for \Leftarrow, simply observe that $f(r)=f\left(r^{\prime}\right) \Leftrightarrow f(r)-f\left(r^{\prime}\right)=0 \Leftrightarrow f\left(r-r^{\prime}\right)=0 \Leftrightarrow r-r^{\prime} \in \operatorname{Ker} f$.

Quotient rings

Binary relations

Definition (Relation)

Let X be a set. A relation R on X is a map

$$
\begin{array}{ccc}
X \times X & \longrightarrow & \{\text { True, False }\} \\
(x, y) & \longmapsto & x R y,
\end{array}
$$

Example

- $X=\mathbb{R}, R=<$.
- $X=$ any set, $R=\neq$.
- $X=$ subsets of some fixed set, $R=\subseteq$.

Binary relations

Definition (Relation)

Let X be a set. A relation R on X is a map

$$
\begin{array}{rcc}
X \times X & \longrightarrow & \{\text { True, False }\} \\
(x, y) & \longmapsto & x R y,
\end{array}
$$

Definition (Equivalence relation)

A relation R on a set X is an equivalence relation if:

- (Reflexive) For all $x \in X, x R x$.
- (Symmetric) For all $x, y \in X, x R y \Longleftrightarrow y R x$.
- (Transitive) For all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$.

Example

If $X=\{$ People $\}$, then the relation "have the same given name" is an equivalence relation.

Quotient sets

Let X be a set, and let \sim be an equivalence relation on X.

Definition (Equivalence class)

The class of $x \in X$ is $\bar{x}=\{y \in X \mid y \sim x\}$.

Definition (Quotient set)

The quotient of X by \sim is $X / \sim=\{\bar{x} \mid x \in X\}$.
It comes with the projection $\begin{array}{lll}X & \longrightarrow & X / \sim \\ x & \longmapsto & \bar{x} .\end{array}$

Example

If $X=\{$ People $\}$ and $\sim=$ "have the same (given) name", then

$$
\begin{aligned}
& \bar{x}=\{\text { People } y \mid y \text { has same name as } x\}, \\
& x / \sim=\{\{\text { People named } n\} \mid n \text { a name }\} .
\end{aligned}
$$

Induced maps

Let X be a set, \sim an equivalence relation on X, and $f: X \longrightarrow Y$ a map.

Definition

ONLY if $x \sim x^{\prime} \Longrightarrow f(x)=f\left(x^{\prime}\right)$, then we can define

$$
\begin{array}{clc}
\bar{f}: X / \sim & \longrightarrow & Y \\
\bar{x} & \longmapsto & f(x) .
\end{array}
$$

We then say that " f passes to the quotient".

Induced maps

Let X be a set, \sim an equivalence relation on X, and $f: X \longrightarrow Y$ a map.

Definition

ONLY if $x \sim x^{\prime} \Longrightarrow f(x)=f\left(x^{\prime}\right)$, then we can define

$$
\begin{array}{clc}
\bar{f}: X / \sim & \longrightarrow & Y \\
\bar{x} & \longmapsto & f(x) .
\end{array}
$$

We then say that " f passes to the quotient".

Example

If $X=\{$ People $\}$ and $\sim=$ "have the same full name", then

- If $f(x)=$ Initials of x, then f passes to the quotient.
- If $f(x)=$ age of x, then \bar{f} is not defined.

Quotient structures: the example of groups

Let G be a group. For which \sim on G do we still have a group structure on G / \sim ? In other words, when do the definitions $\bar{g} \bar{h}=\overline{g h}, \bar{g}^{-1}=\overline{g^{-1}}$ make sense?

Then $N=\bar{e}=\{g \in G \mid g \sim e\}$ would determine \sim, since

$$
g \sim h \Leftrightarrow \bar{g}=\bar{h} \Leftrightarrow \bar{g} \bar{h}^{-1}=\bar{e} \Leftrightarrow \overline{g h^{-1}}=\bar{e} \Leftrightarrow g h^{-1} \in N .
$$

And we would need $\left\{\begin{aligned} g, h \in N & \Rightarrow g h \in N, \\ g \in N & \Rightarrow g^{-1} \in N, \\ g \in N, h \in G & \Rightarrow h g h^{-1} \in N,\end{aligned}\right.$
which means $N \triangleleft G$.
Conversely, we check that if $N \triangleleft G$, then \sim defined by

$$
g \sim h \Longleftrightarrow g h^{-1} \in N \Longleftrightarrow g=h n \text { for some } n \in N
$$

is an equivalence relation such that the group law passes to the quotient. This quotient group is denoted by G / N.

Quotient structures: the example of groups

And we would need $\left\{\begin{aligned} g, h \in N & \Rightarrow g h \in N, \\ g \in N & \Rightarrow g^{-1} \in N, \\ g \in N, h \in G & \Rightarrow h g h^{-1} \in N,\end{aligned}\right.$ which means $N \triangleleft G$.

Conversely, we check that if $N \triangleleft G$, then \sim defined by

$$
g \sim h \Longleftrightarrow g h^{-1} \in N \Longleftrightarrow g=h n \text { for some } n \in N
$$

is an equivalence relation such that the group law passes to the quotient. This quotient group is denoted by G / N.

For example, to check that $\bar{g} \bar{h}=\overline{g h}$ makes sense, we must prove that $g \sim g^{\prime}, h \sim h^{\prime} \Longrightarrow g h \sim g^{\prime} h^{\prime}$.
And indeed, if $g^{\prime}=g n, h^{\prime}=h m$ for some $n, m \in N$, then $\left(g^{\prime} h^{\prime}\right)(g h)^{-1}=g n \underbrace{h m h^{-1}}_{\in N} g^{-1} \in N$.
In particular, the projection $G \longrightarrow G / N$ is actually a morphism.

Quotient rings

Let R be a ring. For which \sim on R do we still have a ring structure on R / \sim by the definitions $\bar{x}+\bar{y}=\overline{x+y}, \overline{x y}=\overline{x y}$?

Let $I=\overline{0}=\{x \in R \mid x \sim 0\}$. We have

$$
x \sim y \Leftrightarrow \bar{x}=\bar{y} \Leftrightarrow \bar{x}-\bar{y}=\overline{0} \Leftrightarrow \overline{x-y}=\overline{0} \Leftrightarrow x-y \in I .
$$

And we need $\left\{\begin{aligned} i, j \in I & \Rightarrow i+j \in I,\end{aligned}\right.$ $\{\quad i \in I, x \in R \Rightarrow x i \in I$, which means that l is an ideal of R.

Conversely, if I is any ideal of R, then \sim defined by

$$
x \sim y \Longleftrightarrow x-y \in I \Longleftrightarrow y=x+i \text { for some } i \in I
$$

is an equivalence relation such that + and \times pass to the quotient:
If $x \sim x^{\prime}, y \sim y^{\prime}$, then $x^{\prime}=x+i, y^{\prime}=y+j$ for some $i, j \in I$, so $x^{\prime}+y^{\prime}=x+y+(i+j) \sim x+y$, and $x^{\prime} y^{\prime}=(x+i)(y+j)=x y+(i y+x j+i j) \sim x y$.

Quotient rings

Conversely, if I is any ideal of R, then \sim defined by

$$
x \sim y \Longleftrightarrow x-y \in I \Longleftrightarrow y=x+i \text { for some } i \in I
$$

is an equivalence relation such that + and \times pass to the quotient:
If $x \sim x^{\prime}, y \sim y^{\prime}$, then $x^{\prime}=x+i, y^{\prime}=y+j$ for some $i, j \in I$,
so $x^{\prime}+y^{\prime}=x+y+(i+j) \sim x+y$,
and $x^{\prime} y^{\prime}=(x+i)(y+j)=x y+(i y+x j+i j) \sim x y$.
This quotient ring is denoted by R / I. Its 0 is $\overline{0}$, its 1 is $\overline{1}$. Besides, we have $-\bar{x}=\overline{-x}$, and the projection $R \longrightarrow R / I$ is a ring morphism.

Quotient rings

This quotient ring is denoted by R / I. Its 0 is $\overline{0}$, its 1 is $\overline{1}$. Besides, we have $-\bar{x}=\overline{-x}$, and the projection $R \longrightarrow R / I$ is a ring morphism.

Remark

Every ideal $I \triangleleft R$ is a kernel, namely that of $R \rightarrow R / I$.
Every subring $S \subseteq R$ is an image, namely that of $S \hookrightarrow R$.

Example of quotient ring: $\mathbb{Z} / n \mathbb{Z}$

Let $n \in \mathbb{N}$. Then $n \mathbb{Z}=\{n x, x \in \mathbb{Z}\} \subseteq \mathbb{Z}$ is an ideal, so we have the quotient ring $\mathbb{Z} / n \mathbb{Z}$. This is the ring of integers modulo n.

By definition of the quotient, two integers are viewed as the same element of $\mathbb{Z} / n \mathbb{Z}$ iff. they differ by a multiple of n.

Example

In $\mathbb{Z} / 5 \mathbb{Z}$, we have $\overline{2} \times \overline{3}=\overline{6}=\overline{1}$.
So $\overline{2}$ has become invertible, $\overline{2}^{-1}=\overline{3}$.
In fact, $\mathbb{Z} / 5 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ is actually a field!

The isomorphism theorem

Induced ring morphisms

Proposition

Let R and S be rings, $f: R \longrightarrow S$ a morphism, and $I \triangleleft R$ an ideal. Then f passes to the quotient into $\bar{f}: R / I \longrightarrow S$ iff. $I \supseteq \operatorname{Ker} f$. In this case, \bar{f} is also a ring morphism, and $\operatorname{lm} \bar{f}=\operatorname{lm} f \subseteq S$.

Induced ring morphisms

Proposition

Let R and S be rings, $f: R \longrightarrow S$ a morphism, and $I \triangleleft R$ an ideal. Then f passes to the quotient into $\bar{f}: R / I \longrightarrow S$ iff. $I \supseteq$ Ker f. In this case, \bar{f} is also a ring morphism, and $\operatorname{lm} \bar{f}=\operatorname{lm} f \subseteq S$.

Proof.

f passes to the quotient iff. $f(r)=f\left(r^{\prime}\right)$ whenever $\bar{r}=\overline{r^{\prime}}$, that is to say whenever $r-r^{\prime} \in I$. But also $f(r)=f\left(r^{\prime}\right) \Leftrightarrow f(r)-f\left(r^{\prime}\right)=0 \Leftrightarrow f\left(r-r^{\prime}\right)=0 \Leftrightarrow r-r^{\prime} \in \operatorname{Ker} f$, whence the condition.

If \bar{f} exists, then it is automatically a morphism, since $\bar{f}(\bar{x})+\bar{f}(\bar{y})=f(x)+f(y)=f(x+y)=\bar{f}(\overline{x+y})=\bar{f}(\bar{x}+\bar{y})$, and similarly $\bar{f}(\bar{x}) \bar{f}(\bar{y})=\bar{f}(\overline{x y})$ and $\bar{f}(\overline{1})=f(1)=1$.
Finally $\operatorname{Im} \bar{f}=\operatorname{Im} f$ because $\bar{f}(\bar{x})=f(x)$ by definition of \bar{f}.

The isomorphism theorem

Theorem (First isomorphism theorem)

Let $f: R \longrightarrow S$ be a ring morphism. Then f induces a ring isomorphism $\bar{f}: R / \operatorname{Ker} f \xrightarrow{\sim} \operatorname{Im} f$.

Proof.

By the previous proposition, \bar{f} exists, and is surjective onto $\operatorname{Im} \bar{f}=\operatorname{Im} f$. Besides, for all $\bar{x} \in \operatorname{Ker} \bar{f} \subseteq R / \operatorname{Ker} f$, we have $0=\bar{f}(\bar{x})=f(x)$, so $x \in \operatorname{Ker} f$, so $\bar{x}=\overline{0} \in R / \operatorname{Ker} f$; thus $\operatorname{Ker} \bar{f}=\{\overline{0}\}$ so \bar{f} is also injective.

The isomorphism theorem

Theorem (First isomorphism theorem)

Let $f: R \longrightarrow S$ be a ring morphism. Then f induces a ring isomorphism $\bar{f}: R / \operatorname{Ker} f \xrightarrow{\sim} \operatorname{Im} f$.

Proof.

By the previous proposition, \bar{f} exists, and is surjective onto $\operatorname{Im} \bar{f}=\operatorname{Im} f$. Besides, for all $\bar{x} \in \operatorname{Ker} \bar{f} \subseteq R / \operatorname{Ker} f$, we have $0=\bar{f}(\bar{x})=f(x)$, so $x \in \operatorname{Ker} f$, so $\bar{x}=\overline{0} \in R / \operatorname{Ker} f$; thus $\operatorname{Ker} \bar{f}=\{\overline{0}\}$ so \bar{f} is also injective.
where $x \sim x^{\prime} \Leftrightarrow f(x)=f\left(x^{\prime}\right)$.
$X / \sim \underset{\vec{f}}{ } \operatorname{lm} f$

The isomorphism theorem

Theorem (First isomorphism theorem)

Let $f: R \longrightarrow S$ be a ring morphism. Then f induces a ring isomorphism $\bar{f}: R / \operatorname{Ker} f \xrightarrow{\sim} \operatorname{Im} f$.

Proof.

By the previous proposition, \bar{f} exists, and is surjective onto $\operatorname{lm} \bar{f}=\operatorname{Im} f$. Besides, for all $\bar{x} \in \operatorname{Ker} \bar{f} \subseteq R / \operatorname{Ker} f$, we have $0=\bar{f}(\bar{x})=f(x)$, so $x \in \operatorname{Ker} f$, so $\bar{x}=\overline{0} \in R / \operatorname{Ker} f$; thus $\operatorname{Ker} \bar{f}=\{\overline{0}\}$ so \bar{f} is also injective.

Application: In order to understand a quotient ring R / I, find a morphism $f: R \longrightarrow S$ such that $I=\operatorname{Ker} f$; then

$$
R / I \simeq \operatorname{lm} f \subseteq S
$$

Example: the nature of \mathbb{C}

Let us apply the isomorphism theorem to the morphism

$$
\begin{aligned}
f: \mathbb{R}[x] & \longrightarrow \mathbb{C} \\
P(x) & \longmapsto P(i) .
\end{aligned}
$$

Every $a+b i \in \mathbb{C}$ is reached by $P(x)=a+b x$, so $\operatorname{lm} f=\mathbb{C}$. Thus $\mathbb{R}[x] / \operatorname{Ker} f \simeq \mathbb{C}$.

If $P(x) \in \operatorname{Ker} f$, then $P(i)=0$ and $P(-i)=P(\bar{i})=\overline{P(i)}=0$, so $P(x)$ is divisible by $(x-i)(x+i)=x^{2}+1$. Thus

$$
\operatorname{Ker} f=\left(x^{2}+1\right)=\left\{\left(x^{2}+1\right) Q(x), Q(x) \in \mathbb{R}[x]\right\}
$$

In conclusion, $\mathbb{C} \simeq \mathbb{R}[x] /\left(x^{2}+1\right)$ is " \mathbb{R} adjoined some x such that $x^{2}+1=0$.

