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Reminder: groups

Definition (Group)

A group is a set G equipped with a law (= operation)

G × G −→ G
(x , y) 7−→ x · y

such that:

(Associativity) For all x , y , z ∈ G, (x · y) · z = x · (y · z)
 x · y · z ∈ G makes sense.

(Identity) There exists an identity element e ∈ G which
satisfies: for all x ∈ G, x · e = e · x = x.

(Inverses) Every x ∈ G has an inverse y ∈ G which
satisfies: x · y = y · x = e.
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Reminder: groups

Remark

Technically, we should write the group as (G , ·) so as to
specify the law.

G 6= ∅, because e ∈ G . So the smallest (and most
boring) possible group is G = {e}.
The identity e is unique: If e ′ ∈ G is another identity,
then e = e · e ′ = e ′.

Similarly, for each x ∈ G , the inverse of x is unique:
If y , y ′ ∈ G are inverses of x , then

y = y · e = y · x · y ′ = e · y ′ = y ′.

 we denote this unique inverse by x−1.
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Reminder: groups

Definition (Abelian group)

We say that a group G is Abelian if x · y = y · x for all
x , y ∈ G.

In an Abelian group, the operation is usually denoted by +
instead of ·, and inverses by −x instead of x−1.

Example

(Z,+) is an Abelian group.
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Rings: definition

Definition (Ring)

A ring is a set R equipped with two laws:
R × R −→ R
(x , y) 7−→ x + y

and
R × R −→ R
(x , y) 7−→ x × y = xy

such that:

(Addition) (R ,+) is an Abelian group.
The identity element for + is written 0 ∈ R. The inverse
of x ∈ R for + is called the negative of x and written −x.

(Associativity) For all x , y , z ∈ R, (xy)z = x(yz)
 xyz ∈ R makes sense.

(Identity) There exists an identity element 1 ∈ R which
satisfies: for all x ∈ R, x1 = 1x = x.

(Distributivity) For all x , y , z ∈ R, we have
x(y + z) = (xy) + (xz) and (x + y)z = (xz) + (yz).
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Rings: examples

Example

(Z,+,×) is actually a ring.

Let n ∈ N. The set Mn(R) of n × n matrices with
coefficients in R is a ring; its 0 is the matrix full of zeros,
and its 1 is the identity matrix In.

We could redefine the multiplication on Mn(R) by
multiplying matrices coefficient-wise
 new ring structure on the same set Mn(R), with the
same 0, but now the 1 is the matrix full of ones.
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Rings: more examples

Example

If R and S are rings, then their product

R × S = {(r , s) | r ∈ R , s ∈ S}
endowed with the laws

(r , s) + (r ′, s ′) = (r + r ′, s + s ′), (r , s)(r ′, s ′) = (rr ′, ss ′),

is a ring whose 0 is (0R , 0S) and whose 1 is (1R , 1S).

If R is a ring, then we can define the ring

R[x ] = {rnxn + · · · r1x + r0 | r0, r1, · · · , rn ∈ R , n ∈ N}
of polynomials with coefficients in R .
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Rings: basic properties

Remark

R 6= ∅, because 0, 1 ∈ R . We do not require 0 6= 1, more
on this later.

0 is unique as the identity of (R ,+). Similarly, 1 ∈ R is
unique (same proof, although (R ,×) is not a group in
general).

Negatives are unique, as inverses for a group law.
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Consequences of distributivity

Proposition

Let R be a ring. Then x0 = 0x = 0 for all x ∈ R, and
(−x)y = −(xy) = x(−y) for all x , y ∈ R.

Proof.

Let x , y ∈ R . Then

0x = 0x+x−x = 0x+1x−x = (0+1)x−x = 1x−x = x−x = 0;

similarly x0 = x0 + x − x = x0 + x1− x = x − x = 0.

Therefore, (−x)y + xy = (−x + x)y = 0y = 0,
so (−x)y = −(xy) since negatives are unique.
Similarly, x(−y) = −xy because
x(−y) + xy = x(y +−y) = x0 = 0.
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Consequences of distributivity

Proposition

Let R be a ring. Then x0 = 0x = 0 for all x ∈ R, and
(−x)y = −(xy) = x(−y) for all x , y ∈ R.

Corollary (Zero ring)

If 0 = 1 in R, then R = {0}.

Proof.

If 0 = 1, then for all x ∈ R , x = x1 = x0 = 0.
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Commutative rings

Definition (Commutative ring)

We say that a ring R is commutative if

xy = yx for all x , y ∈ R .

Remark

By definition of a ring, + is always commutative.

Example

The ring Z is commutative.

Counter-example

The ring Mn(R) is not commutative as soon as n ≥ 2.

In this module, we will mostly focus on commutative rings.
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The binomial formula

Theorem

In a commutative ring R, we have the binomial formula

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

for all x , y ∈ R and n ∈ N.

Proof.

When we expand (x + y)n = (x + y)(x + y) · · · (x + y), we
get a sum of terms such as xxyxy · · · . As the ring is
commutative, we may rearrange them in the form xky l , where
k + l = n, so l = n − k . Since + is also commutative, we can
gather the terms xkyn−k which have the same k . The number
of times we get xkyn−k is by definition

(
n
k

)
.

Nicolas Mascot Rings, fields, and modules



Domains & Fields
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Invertible elements

Definition

An element x ∈ R is invertible if there exists y ∈ R such that
xy = 1 = yx. This y is then unique, and denoted by x−1.
The set of invertibles of R is written R×.

Example

Z× = {1,−1}.
Mn(R)× = GLn(R).

We always have 1 ∈ R×. In fact, R× is a group under ×, with
identity 1, which is Abelian if R is commutative.

The 0 of R is never invertible, unless R = {0}: if 0 were
invertible, then 1 = 00−1 = 0.
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Fields

Definition (Field)

A field is a commutative ring F such that F× = F \ {0}.

Example

Q, R, C are fields.
If F is a field, then so is the rational fraction field

F (x) = {P(x)
Q(x)
| P(x),Q(x) ∈ F [x ],Q(x) 6= 0}.

Counter-example

Z is not a field, since only 1 and −1 are invertible.
The zero ring R = {0} is not a field, since
R \ {0} = ∅ 6= R× = R .
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Fields

Definition (Field)

A field is a commutative ring F such that F× = F \ {0}.

Remark (Not examinable)

A “non-commutative field” is called a division algebra.
Example: the Hamilton quaternions.
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Domains

Definition (Domain)

A domain (a.k.a integral domain) is a nonzero commutative
ring D such that for all x , y ∈ D,

xy = 0 implies x = 0 or y = 0.

Counter-example

If R and S are nonzero rings, then R × S is not a domain,
since x = (1R , 0S), y = (0R , 1S) ∈ R × S are such that
xy = (0R , 0S) = 0 but x , y 6= 0.

The set F of continuous functions R −→ R, equipped
with point-wise operations (f + g)(x) = f (x) + g(x),
(fg)(x) = f (x)g(x) for all f , g ∈ F and x ∈ R, is a
commutative ring which is not a domain either: consider
f which vanishes on (−∞, 1], and g which vanishes on
[−1,+∞).

Nicolas Mascot Rings, fields, and modules



Domains

Definition (Domain)

A domain (a.k.a integral domain) is a nonzero commutative
ring D such that for all x , y ∈ D,

xy = 0 implies x = 0 or y = 0.

Proposition

Every field is a domain.

Proof.

Let F be a field, and x , y ∈ F be such that xy = 0. If x 6= 0,
then x is invertible, whence y = 1y = x−1xy = x−10 = 0.

Counter-example

Z is a domain which is not a field.
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Polynomials over a domain

Proposition

If D is a domain, then so is the polynomial ring D[x ], and we
have the rule deg(PQ) = degP + degQ for all
P(x),Q(x) ∈ D[x ].

Proof.

Let P(x),Q(x) ∈ D[x ], both non zero. We can write

P(x) = anx
n + lower terms,

with an ∈ D, an 6= 0, so that n = degP ; similarly

Q(x) = bmx
m + lower terms,

bm 6= 0, m = degQ. Then

P(x)Q(x) = anbmx
n+m + lower terms,

and anbm 6= 0 since D is a domain. Therefore PQ 6= 0, and
has degree n + m.
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Classification of commutative rings

So far, we have

Fields ( Domains ( Commutative rings.

Commutative algebra is the branch of mathematics that
refines this classification. A ring can be Noetherian, Artinian,
a UFD, a PID, Euclidean, integrally closed, local, catenary,
Cohen-Macaulay, Gorenstein, excellent, Japanese, . . .

We will study some of this concepts in the next chapter.

From now on, in the rest of
this module, we only consider
commutative rings.
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Subrings
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Subrings

Definition (Subring)

Let R be a ring. A subring of R is a subset S ⊆ R which
contains 1R and is closed under +, −, and ×.

Example

Z is a subring of Q.

Let R be the ring of continuous functions R −→ R. Then
smooth functions form a subring of R .

Counter-example

N is not a subset of Z, since it is not closed under −.

Given two nonzero rings R and S , the subset
R × {0} = {(r , 0) | r ∈ R} of R × S is closed under +,
−, and ×, but it is not a subring since it does not contain
1 = (1R , 1S).
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Operations on subrings

Proposition

An intersection of subrings is a subring.

Proof.

Let S1, S2, · · · , Si , · · · be subrings, and S =
⋂

i Si .
For all i , 1 ∈ Si because Si is a subring, so 1 ∈ S .
Let x , y ∈ S . Then for all i , x , y ∈ Si , so x + y ∈ Si because
Si is a subring; thus x + y ∈ S . Similarly for − and ×.
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Operations on subrings

Definition

The subring generated by a subset S ⊂ R is the smallest
subring containing S.

This is the set of elements that we can obtain with +,−,×
from S and 1; alternatively, it is⋂

T subring of R
T⊇S

T .

Example

The subring of C generated by i is
Z[i ] = {a + bi | a, b ∈ Z},

which is indeed a subring because
(a + bi)(a′ + b′i) = (aa′ − bb′) + (ab′ + ba′)i .
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Ideals
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Ideals

Definition (Ideal)

An ideal of a ring R is a subset I ⊂ R such that:

I 6= ∅,
For all i , j ∈ I , i + j ∈ I ,

For all i ∈ I and r ∈ R, ri ∈ I .

Example

If F is the ring of continuous functions R −→ R and if we fix
x0 ∈ R, then the set of elements of F that vanish at x = x0 is
an ideal of F .

Remark

If I is an ideal, then (I ,+) is an Abelian group. Indeed, let
i ∈ I ; then −i = (−1)i ∈ I , so 0 = i +−i ∈ I .
So the smallest ideal of R is I = {0}, and the largest is I = R .
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Proper ideals

Lemma

Let I ⊆ R be an ideal. Then
I = R ⇐⇒ I 3 1⇐⇒ I ∩ R× 6= ∅.

Proof.

If I contains an invertible u ∈ R×, then 1 = u−1u ∈ I .
If I 3 1, then for all r ∈ R , r = r1 ∈ I , so I ⊇ R , so I = R .
If I = R , then I ∩ R× = R× 6= ∅ since R× 3 1.

Corollary

The only subset of R which is both a subring and an ideal is R
itself.

Corollary

If R is actually a field, then its only ideals are {0} and R itself.
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Operations on ideals

Proposition

An intersection of ideals is a ideal.

Proof.

Let I1, I2, · · · , Ik , · · · be subrings, and I =
⋂

k Ik .
For all k , 0 ∈ Ik because Ik is an ideal, so 0 ∈ I .
Let i , j ∈ I . Then for all k , i , j ∈ Ik , so i + j ∈ Ik because Ik is
an ideal; thus i + j ∈ I .
Finally, let i ∈ I and r ∈ R . Then for all k , i ∈ Ik , so ri ∈ Ik
because Ik is an ideal; thus ri ∈ I .
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Operations on ideals

Proposition

An intersection of ideals is a ideal.

Definition

The ideal generated by a subset S ⊆ R is the smallest ideal
containing S.

This is the set of elements that we can obtain from S and 0
with +,−, and multiplication by R ; alternatively, it is⋂

I ideal of R
I⊇S

I .

Example

For R = Z, the ideal generated by {4, 10} is the ideal 2Z of
even numbers.
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Operations on ideals

Proposition

If I , J ⊆ R are ideals, then so is
I + J = {i + j | i ∈ I , j ∈ J}.

Proof.

Since I and J are ideals, they contain 0, so 0 = 0 + 0 ∈ I + J .
Let x , y ∈ I + J , so x = i + j , y = i ′ + j ′, where i , i ′ ∈ I ,
j , j ′ ∈ J . Then x + y = (i + i ′) + (j + j ′) ∈ I + J .
Let x ∈ I + J , so x = i + j where i ∈ I , j ∈ J , and let r ∈ R .
Then rx = ri + rj ∈ I + J since ri ∈ I , rj ∈ J .
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Operations on ideals

Proposition

If I , J ⊆ R are ideals, then so is

IJ =

{
n∑

k=1

ik jk | n ∈ N, ik ∈ I , jk ∈ J

}
.

Proof.

Since I and J are ideals, they contain 0, so 0 = 00 ∈ IJ .
Let x , y ∈ IJ , so x and y are sums of products of the
form ij , i ∈ I , j ∈ J . Then x + y is a longer such sum, and
thus lies in IJ .
Let x ∈ IJ , so x =

∑n
k=1 ik jk , where n ∈ N and ik ∈ I , jk ∈ J

for all k , and let r ∈ R . Then
rx = r

∑n
k=1 ik jk =

∑n
k=1(rik)jk ∈ IJ since rik ∈ I for all k .
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Operations on ideals

Proposition

An intersection of ideals is a ideal.

Proposition

If I , J ⊆ R are ideals, then so is
I + J = {i + j | i ∈ I , j ∈ J}.

Proposition

If I , J ⊆ R are ideals, then so is

IJ =

{
n∑

k=1

ik jk | n ∈ N, ik ∈ I , jk ∈ J

}
.
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Principal ideals

Let R be a ring. For x ∈ R , write

(x) = xR = {xy | y ∈ R}.
This is the ideal of R generated by {x}.

Definition (Principal)

An ideal is principal if it is of the form xR for some x ∈ R.
A ring is principal if all its ideals are principal.

Example

We will prove later that Z is principal,which means that every
ideal of Z is of the form nZ for some n ∈ Z.
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Principal ideals

Definition (Principal)

An ideal is principal if it is of the form xR for some x ∈ R.
A ring is principal if all its ideals are principal.

Example

We will prove later that Z is principal,which means that every
ideal of Z is of the form nZ for some n ∈ Z.

Counter-example

Let R = Z[x ], and I = {P(x) ∈ R | P(0) is even}. Then I is
an ideal of R , but it is not principal: suppose we G (x) ∈ R
such that I = (G ), then as 2 ∈ I , 2 = GH for some H(x) ∈ R ,
so degG = degH = 0, so G = ±2. But then P(x) = x ∈ I
yet is not a multiple of G , absurd. So R is not principal.
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Ring morphisms
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Reminder: group morphisms

Definition (Group morphism)

A morphism from a group (G , ·) to a group (H ,×) is a
function f : G −→ H which satisfies f (g · g ′) = f (g)× f (g ′)
for all g , g ′ ∈ G.

This automatically implies that f (eG ) = eH , and that
f (g−1) = f (g)−1 for all g ∈ G .
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Reminder: group morphisms

Definition (Group morphism)

A morphism from a group (G , ·) to a group (H ,×) is a
function f : G −→ H which satisfies f (g · g ′) = f (g)× f (g ′)
for all g , g ′ ∈ G.

Definition (Image)

The image of a group morphism f : G −→ H is
Im f = {f (g) | g ∈ G} ⊆ H .

Im f is a subgroup of H .

Definition (Kernel)

The kernel of a group morphism f : G −→ H is
Ker f = {g ∈ G | f (g) = eH} ⊆ G .

Ker f is a normal subgroup of G .
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Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A morphism from R to S is a function
f : R −→ S which satisfies:

For all x , y ∈ R, f (x + y) = f (x) + f (y),

For all x , y ∈ R, f (xy) = f (x)f (y),

f (1R) = 1S .

Remark

By the first point, f is in particular a group morphism from
(R ,+) to (S ,+), so we automatically have that f (0R) = 0S ,
and that f (−x) = −f (x) for all x ∈ R .

f also induces a group morphism from (R×,×) to (S×,×).
Indeed, if u ∈ R×, then f (u)f (u−1) = f (uu−1) = f (1R) = 1S ,
which means that f (u) is invertible with inverse f (u)−1.
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Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A morphism from R to S is a function
f : R −→ S which satisfies:

For all x , y ∈ R, f (x + y) = f (x) + f (y),

For all x , y ∈ R, f (xy) = f (x)f (y),

f (1R) = 1S .

Example

Let R be a ring, and fix r ∈ R . Then the evaluation map
R[x ] −→ R
P(x) 7−→ P(r)

is a ring morphism. Indeed, given P(x),Q(x) ∈ R[x ], we do
have (P + Q)(r) = P(r) + Q(r), (PQ)(r) = P(r)Q(r), and
1R[x](r) = 1R .
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Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A morphism from R to S is a function
f : R −→ S which satisfies:

For all x , y ∈ R, f (x + y) = f (x) + f (y),

For all x , y ∈ R, f (xy) = f (x)f (y),

f (1R) = 1S .

Remark

If f : R −→ S and g : S −→ T are ring morphisms,
then so is g ◦ f : R −→ T .
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Image of a morphism

Definition (Image of a morphism)

The image of a ring morphism f : R −→ S is

Im f = {f (r) | r ∈ R} ⊆ S .

Example

Let f :
Z[x ] −→ C
P(x) 7−→ P(i)

.

If P(x) ∈ Z[x ], then P(x) =
∑n

k=0 akx
k with ak ∈ Z for all k ,

so P(i) =
∑n

k=0 ak i
k is of the form a + bi with a, b ∈ Z

since ik = ±1 or ±i for all k , so
Im f ⊆ {a + bi | a, b ∈ Z} = Z[i ].

Conversely, every a + bi ∈ Z[i ] is reached by
P(x) = a + bx ∈ Z[x ], so

Im f = Z[i ],

whence the notation Z[i ].
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Image of a morphism

Definition (Image of a morphism)

The image of a ring morphism f : R −→ S is

Im f = {f (r) | r ∈ R} ⊆ S .

Proposition

If f : R −→ S is a ring morphism, then Im f is a subring of S.

Proof.

1S = f (1R) ∈ Im f .
Besides, if s, s ′ ∈ Im f , then s = f (r), s ′ = f (r ′) for some
r , r ′ ∈ R , so
s + s ′ = f (r) + f (r ′) = f (r + r ′) ∈ Im f ,
s − s ′ = f (r)− f (r ′) = f (r) + f (−r ′) = f (r − r ′) ∈ Im f ,
and ss ′ = f (r)f (r ′) = f (rr ′) ∈ Im f .
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Image of a morphism

Definition (Image of a morphism)

The image of a ring morphism f : R −→ S is

Im f = {f (r) | r ∈ R} ⊆ S .

Proposition

If f : R −→ S is a ring morphism, then Im f is a subring of S.

Remark

f is surjective ⇐⇒ Im f = S .
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Kernel of a morphism

Definition (Kernel of a morphism)

The kernel of a ring morphism f : R −→ S is

Ker f = {r ∈ R | f (r) = 0S} ⊆ R .

Example

Let F be the ring of continuous functions R −→ R,
and fix x0 ∈ R. Then

F −→ R
f 7−→ f (x0)

is a ring morphism, whose kernel is the subset of F formed of
the functions which vanish at x0.
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Kernel of a morphism

Definition (Kernel of a morphism)

The kernel of a ring morphism f : R −→ S is

Ker f = {r ∈ R | f (r) = 0S} ⊆ R .

Proposition

If f : R −→ S is a ring morphism, then Ker f is a ideal of R.

Proof.

0R ∈ Ker f because f (0R) = 0S .
If z , z ′ ∈ Ker f , then f (z + z ′) = f (z) + f (z ′) = 0S + 0S = 0S ,
so z + z ′ ∈ Ker f .
If z ∈ Ker f and r ∈ R , then f (rz) = f (r)f (z) = f (r)0S = 0S ,
so rz ∈ Ker f .
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Kernel of a morphism

Definition (Kernel of a morphism)

The kernel of a ring morphism f : R −→ S is

Ker f = {r ∈ R | f (r) = 0S} ⊆ R .

Proposition

If f : R −→ S is a ring morphism, then Ker f is a ideal of R.

Remark

f is injective ⇐⇒ Ker f = {0}.
Indeed, ⇒ is clear; for ⇐, simply observe that
f (r) = f (r ′)⇔ f (r)− f (r ′) = 0⇔ f (r − r ′) = 0⇔ r − r ′ ∈ Ker f .
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Quotient rings
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Binary relations

Definition (Relation)

Let X be a set. A relation R on X is a map

X × X −→ {True, False}
(x , y) 7−→ xRy ,

Example

X = R, R =<.

X = any set, R = 6=.

X = subsets of some fixed set, R =⊆.
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Binary relations

Definition (Relation)

Let X be a set. A relation R on X is a map

X × X −→ {True, False}
(x , y) 7−→ xRy ,

Definition (Equivalence relation)

A relation R on a set X is an equivalence relation if:

(Reflexive) For all x ∈ X, xRx.

(Symmetric) For all x , y ∈ X, xRy ⇐⇒ yRx.

(Transitive) For all x , y , z ∈ X, if xRy and yRz, then xRz.

Example

If X = { People }, then the relation “have the same given
name” is an equivalence relation.
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Quotient sets

Let X be a set, and let ∼ be an equivalence relation on X .

Definition (Equivalence class)

The class of x ∈ X is x = {y ∈ X | y ∼ x}.

Definition (Quotient set)

The quotient of X by ∼ is X/∼ = {x | x ∈ X}.

It comes with the projection
X −→ X/∼
x 7−→ x .

Example

If X = {People} and ∼= “have the same (given) name”, then

x = { People y | y has same name as x},
X/∼=

{
{People named n} | n a name

}
.
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Induced maps

Let X be a set, ∼ an equivalence relation on X ,
and f : X −→ Y a map.

Definition

ONLY if x ∼ x ′ =⇒ f (x) = f (x ′), then we can define

f : X/∼ −→ Y
x 7−→ f (x).

We then say that “f passes to the quotient”.

X f //

��

Y

X/∼
?

<<
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Induced maps

Let X be a set, ∼ an equivalence relation on X ,
and f : X −→ Y a map.

Definition

ONLY if x ∼ x ′ =⇒ f (x) = f (x ′), then we can define

f : X/∼ −→ Y
x 7−→ f (x).

We then say that “f passes to the quotient”.

Example

If X = {People} and ∼= “have the same full name”, then

If f (x) = Initials of x , then f passes to the quotient.

If f (x) = age of x , then f is not defined.
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Quotient structures: the example of groups

Let G be a group. For which ∼ on G do we still have a group
structure on G/∼ ? In other words, when do the
definitions gh = gh, g−1 = g−1 make sense?

Then N = e = {g ∈ G | g ∼ e} would determine ∼, since

g ∼ h⇔ g = h⇔ gh
−1

= e ⇔ gh−1 = e ⇔ gh−1 ∈ N .

And we would need


g , h ∈ N ⇒ gh ∈ N ,
g ∈ N ⇒ g−1 ∈ N ,

g ∈ N , h ∈ G ⇒ hgh−1 ∈ N ,
which means N / G .

Conversely, we check that if N / G , then ∼ defined by

g ∼ h⇐⇒ gh−1 ∈ N ⇐⇒ g = hn for some n ∈ N

is an equivalence relation such that the group law passes to
the quotient. This quotient group is denoted by G/N .
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Quotient structures: the example of groups

And we would need


g , h ∈ N ⇒ gh ∈ N ,
g ∈ N ⇒ g−1 ∈ N ,

g ∈ N , h ∈ G ⇒ hgh−1 ∈ N ,
which means N / G .

Conversely, we check that if N / G , then ∼ defined by

g ∼ h⇐⇒ gh−1 ∈ N ⇐⇒ g = hn for some n ∈ N

is an equivalence relation such that the group law passes to
the quotient. This quotient group is denoted by G/N .

For example, to check that gh = gh makes sense, we must
prove that g ∼ g ′, h ∼ h′ =⇒ gh ∼ g ′h′.
And indeed, if g ′ = gn, h′ = hm for some n,m ∈ N ,
then (g ′h′)(gh)−1 = gn hmh−1︸ ︷︷ ︸

∈N

g−1 ∈ N .

In particular, the projection G −→ G/N is actually a
morphism.
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Quotient rings
Let R be a ring. For which ∼ on R do we still have a ring
structure on R/∼ by the definitions x + y = x + y , xy = xy?

Let I = 0 = {x ∈ R | x ∼ 0}. We have

x ∼ y ⇔ x = y ⇔ x − y = 0⇔ x − y = 0⇔ x − y ∈ I .

And we need

{
i , j ∈ I ⇒ i + j ∈ I ,

i ∈ I , x ∈ R ⇒ xi ∈ I ,
which means that I is an ideal of R .

Conversely, if I is any ideal of R , then ∼ defined by

x ∼ y ⇐⇒ x − y ∈ I ⇐⇒ y = x + i for some i ∈ I

is an equivalence relation such that + and × pass to the
quotient:
If x ∼ x ′, y ∼ y ′, then x ′ = x + i , y ′ = y + j for some i , j ∈ I ,
so x ′ + y ′ = x + y + (i + j) ∼ x + y ,
and x ′y ′ = (x + i)(y + j) = xy + (iy + xj + ij) ∼ xy .
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Quotient rings

Conversely, if I is any ideal of R , then ∼ defined by

x ∼ y ⇐⇒ x − y ∈ I ⇐⇒ y = x + i for some i ∈ I

is an equivalence relation such that + and × pass to the
quotient:
If x ∼ x ′, y ∼ y ′, then x ′ = x + i , y ′ = y + j for some i , j ∈ I ,
so x ′ + y ′ = x + y + (i + j) ∼ x + y ,
and x ′y ′ = (x + i)(y + j) = xy + (iy + xj + ij) ∼ xy .

This quotient ring is denoted by R/I . Its 0 is 0, its 1 is 1.
Besides, we have −x = −x , and the projection R −→ R/I is a
ring morphism.
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Quotient rings

This quotient ring is denoted by R/I . Its 0 is 0, its 1 is 1.
Besides, we have −x = −x , and the projection R −→ R/I is a
ring morphism.

Remark

Every ideal I / R is a kernel, namely that of R → R/I .

Every subring S ⊆ R is an image, namely that of S ↪→ R .
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Example of quotient ring: Z/nZ

Let n ∈ N. Then nZ = {nx , x ∈ Z} ⊆ Z is an ideal, so we
have the quotient ring Z/nZ. This is the ring of integers
modulo n.

By definition of the quotient, two integers are viewed as the
same element of Z/nZ iff. they differ by a multiple of n.

Example

In Z/5Z, we have 2× 3 = 6 = 1.

So 2 has become invertible, 2
−1

= 3.

In fact, Z/5Z = {0, 1, 2, 3, 4} is actually a field!
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The isomorphism theorem
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Induced ring morphisms

Proposition

Let R and S be rings, f : R −→ S a morphism, and I / R an
ideal. Then f passes to the quotient into f : R/I −→ S iff.
I ⊇ Ker f . In this case, f is also a ring morphism, and
Im f = Im f ⊆ S.

R f //

��

S

R/I
?

>>
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Induced ring morphisms

Proposition

Let R and S be rings, f : R −→ S a morphism, and I / R an
ideal. Then f passes to the quotient into f : R/I −→ S iff.
I ⊇ Ker f . In this case, f is also a ring morphism, and
Im f = Im f ⊆ S.

Proof.

f passes to the quotient iff. f (r) = f (r ′) whenever r = r ′,
that is to say whenever r − r ′ ∈ I . But also
f (r) = f (r ′)⇔ f (r)− f (r ′) = 0⇔ f (r − r ′) = 0⇔ r − r ′ ∈ Ker f ,

whence the condition.

If f exists, then it is automatically a morphism, since
f (x) + f (y) = f (x) + f (y) = f (x + y) = f (x + y) = f (x + y),
and similarly f (x)f (y) = f (xy) and f (1) = f (1) = 1.
Finally Im f = Im f because f (x) = f (x) by definition of f .
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The isomorphism theorem

Theorem (First isomorphism theorem)

Let f : R −→ S be a ring morphism. Then f induces a ring
isomorphism f : R/Ker f

∼−→ Im f .

Proof.

By the previous proposition, f exists, and is surjective onto
Im f = Im f . Besides, for all x ∈ Ker f ⊆ R/Ker f , we have
0 = f (x) = f (x), so x ∈ Ker f , so x = 0 ∈ R/Ker f ; thus
Ker f = {0} so f is also injective.

R f //

����

S

R/Ker f
f

// Im f
?�

OO
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The isomorphism theorem

Theorem (First isomorphism theorem)

Let f : R −→ S be a ring morphism. Then f induces a ring
isomorphism f : R/Ker f

∼−→ Im f .

Proof.

By the previous proposition, f exists, and is surjective onto
Im f = Im f . Besides, for all x ∈ Ker f ⊆ R/Ker f , we have
0 = f (x) = f (x), so x ∈ Ker f , so x = 0 ∈ R/Ker f ; thus
Ker f = {0} so f is also injective.

X f //

����

Y

where x ∼ x ′ ⇔ f (x) = f (x ′).

X/∼
f

// Im f
?�

OO
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The isomorphism theorem

Theorem (First isomorphism theorem)

Let f : R −→ S be a ring morphism. Then f induces a ring
isomorphism f : R/Ker f

∼−→ Im f .

Proof.

By the previous proposition, f exists, and is surjective onto
Im f = Im f . Besides, for all x ∈ Ker f ⊆ R/Ker f , we have
0 = f (x) = f (x), so x ∈ Ker f , so x = 0 ∈ R/Ker f ; thus
Ker f = {0} so f is also injective.

Application: In order to understand a quotient ring R/I , find a
morphism f : R −→ S such that I = Ker f ; then

R/I ' Im f ⊆ S .
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Example: the nature of C

Let us apply the isomorphism theorem to the morphism

f : R[x ] −→ C
P(x) 7−→ P(i).

Every a + bi ∈ C is reached by P(x) = a + bx , so Im f = C.
Thus R[x ]/Ker f ' C.

If P(x) ∈ Ker f , then P(i) = 0 and P(−i) = P(i) = P(i) = 0,
so P(x) is divisible by (x − i)(x + i) = x2 + 1. Thus

Ker f = (x2 + 1) = {(x2 + 1)Q(x), Q(x) ∈ R[x ]}.

In conclusion, C ' R[x ]/(x2 + 1) is “R adjoined some x such
that x2 + 1 = 0”.
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