MAU22102 Rings, Fields, and Modules 1 - Rings

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: February 5, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Rings: Definitions, basic properties

Reminder: groups

Definition (Group)

A group is a set G equipped with a law (= operation)

$$egin{array}{ccc} G imes G & \longrightarrow & G \ (x,y) & \longmapsto & x \cdot y \end{array}$$

such that:

- (Associativity) For all x, y, z ∈ G, (x · y) · z = x · (y · z) → x · y · z ∈ G makes sense.
- (Identity) There exists an identity element e ∈ G which satisfies: for all x ∈ G, x · e = e · x = x.
- (Inverses) Every x ∈ G has an inverse y ∈ G which satisfies: x · y = y · x = e.

Reminder: groups

Remark

- Technically, we should write the group as (G, \cdot) so as to specify the law.
- G ≠ Ø, because e ∈ G. So the smallest (and most boring) possible group is G = {e}.
- The identity e is <u>unique</u>: If $e' \in G$ is another identity, then $e = e \cdot e' = e'$.
- Similarly, for each x ∈ G, the inverse of x is <u>unique</u>: If y, y' ∈ G are inverses of x, then

$$y = y \cdot e = y \cdot x \cdot y' = e \cdot y' = y'.$$

 \rightsquigarrow we denote this unique inverse by x^{-1} .

Definition (Abelian group)

We say that a group G is <u>Abelian</u> if $x \cdot y = y \cdot x$ for all $x, y \in G$.

In an Abelian group, the operation is usually denoted by + instead of \cdot , and inverses by -x instead of x^{-1} .

Example

 $(\mathbb{Z},+)$ is an Abelian group.

Rings: definition

Definition (Ring)

 $\begin{array}{cccc} A & \underline{ring} & is \ a \ set \ R & equipped \ with \ \underline{two} \ laws: \\ R \times R & \longrightarrow & R \\ (x,y) & \longmapsto & x+y \end{array} \quad and \quad \begin{array}{cccc} R \times R & \longrightarrow & R \\ (x,y) & \longmapsto & x+y \end{array} \quad and \quad \begin{array}{cccc} (x,y) & \longmapsto & x\times y = xy \\ such \ that: \end{array}$

- (Addition) (R, +) is an Abelian group. The identity element for + is written 0 ∈ R. The inverse of x ∈ R for + is called the <u>negative</u> of x and written -x.
- (Associativity) For all x, y, z ∈ R, (xy)z = x(yz)
 → xyz ∈ R makes sense.
- (Identity) There exists an identity element $1 \in R$ which satisfies: for all $x \in R$, x1 = 1x = x.
- (Distributivity) For all $x, y, z \in R$, we have x(y+z) = (xy) + (xz) and (x+y)z = (xz) + (yz).

Example

- $(\mathbb{Z}, +, \times)$ is actually a ring.
- Let n ∈ N. The set M_n(ℝ) of n × n matrices with coefficients in ℝ is a ring; its 0 is the matrix full of zeros, and its 1 is the identity matrix I_n.
- We could redefine the multiplication on M_n(ℝ) by multiplying matrices coefficient-wise
 → new ring structure on the same set M_n(ℝ), with the same 0, but now the 1 is the matrix full of ones.

Example

• If R and S are rings, then their product

$$R \times S = \{(r,s) \mid r \in R, s \in S\}$$

endowed with the laws

$$(r,s)+(r',s')=(r+r',s+s'), (r,s)(r',s')=(rr',ss'),$$

is a ring whose 0 is $(0_R, 0_S)$ and whose 1 is $(1_R, 1_S)$.

If R is a ring, then we can define the ring
 R[x] = {r_nxⁿ + · · · r₁x + r₀ | r₀, r₁, · · · , r_n ∈ R, n ∈ ℕ} of polynomials with coefficients in R.

Remark

- *R* ≠ Ø, because 0, 1 ∈ *R*. We do not require 0 ≠ 1, more on this later.
- 0 is unique as the identity of (R, +). Similarly, 1 ∈ R is unique (same proof, although (R, ×) is not a group in general).
- Negatives are unique, as inverses for a group law.

Consequences of distributivity

Proposition

Let R be a ring. Then
$$x0 = 0x = 0$$
 for all $x \in R$, and $(-x)y = -(xy) = x(-y)$ for all $x, y \in R$.

Proof.

Let $x, y \in R$. Then

$$0x = 0x + x - x = 0x + 1x - x = (0+1)x - x = 1x - x = x - x = 0;$$

similarly
$$x0 = x0 + x - x = x0 + x1 - x = x - x = 0$$
.

Therefore,
$$(-x)y + xy = (-x + x)y = 0y = 0$$
,
so $(-x)y = -(xy)$ since negatives are unique.
Similarly, $x(-y) = -xy$ because
 $x(-y) + xy = x(y + -y) = x0 = 0$.

Proposition

Let R be a ring. Then x0 = 0x = 0 for all $x \in R$, and (-x)y = -(xy) = x(-y) for all $x, y \in R$.

Corollary (Zero ring)

If 0 = 1 in R, then $R = \{0\}$.

Proof.

If
$$0 = 1$$
, then for all $x \in R$, $x = x1 = x0 = 0$.

Definition (Commutative ring)

We say that a ring R is commutative if

$$xy = yx$$
 for all $x, y \in R$.

Remark

By definition of a ring, + is always commutative.

Example

The ring \mathbb{Z} is commutative.

Counter-example

The ring $\mathcal{M}_n(\mathbb{R})$ is not commutative as soon as $n \geq 2$.

In this module, we will mostly focus on commutative rings.

The binomial formula

Theorem

In a commutative ring R, we have the binomial formula

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

for all $x, y \in R$ and $n \in \mathbb{N}$.

Proof.

When we expand $(x + y)^n = (x + y)(x + y) \cdots (x + y)$, we get a sum of terms such as $xxyxy \cdots$. As the ring is commutative, we may rearrange them in the form $x^k y^l$, where k + l = n, so l = n - k. Since + is also commutative, we can gather the terms $x^k y^{n-k}$ which have the same k. The number of times we get $x^k y^{n-k}$ is by definition $\binom{n}{k}$.

Domains & Fields

Definition

An element $x \in R$ is <u>invertible</u> if there exists $y \in R$ such that xy = 1 = yx. This y is then unique, and denoted by x^{-1} . The set of invertibles of R is written R^{\times} .

Example

•
$$\mathbb{Z}^{\times} = \{1, -1\}.$$

•
$$\mathcal{M}_n(\mathbb{R})^{\times} = \mathrm{GL}_n(\mathbb{R}).$$

We always have $1 \in R^{\times}$. In fact, R^{\times} is a group under \times , with identity 1, which is Abelian if R is commutative.

The 0 of *R* is never invertible, unless $R = \{0\}$: if 0 were invertible, then $1 = 00^{-1} = 0$.

Definition (Field)

A field is a commutative ring F such that $F^{\times} = F \setminus \{0\}$.

Example

 \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields. If F is a field, then so is the <u>rational fraction field</u> $F(x) = \{\frac{P(x)}{Q(x)} \mid P(x), Q(x) \in F[x], Q(x) \neq 0\}.$

Counter-example

 \mathbb{Z} is not a field, since only 1 and -1 are invertible. The zero ring $R = \{0\}$ is not a field, since $R \setminus \{0\} = \emptyset \neq R^{\times} = R$.

Definition (Field)

A field is a commutative ring F such that $F^{\times} = F \setminus \{0\}$.

Remark (Not examinable)

A "non-commutative field" is called a <u>division algebra</u>. Example: the Hamilton quaternions.

Domains

Definition (Domain)

A domain (a.k.a integral domain) is a nonzero commutative ring D such that for all $x, y \in D$, xy = 0 implies x = 0 or y = 0.

Counter-example

- If R and S are nonzero rings, then R × S is not a domain, since x = (1_R, 0_S), y = (0_R, 1_S) ∈ R × S are such that xy = (0_R, 0_S) = 0 but x, y ≠ 0.
- The set F of continuous functions R → R, equipped with point-wise operations (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x) for all f, g ∈ F and x ∈ R, is a commutative ring which is not a domain either: consider f which vanishes on (-∞, 1], and g which vanishes on [-1, +∞).

Domains

Definition (Domain)

A <u>domain</u> (a.k.a <u>integral domain</u>) is a <u>nonzero</u> <u>commutative</u> ring D such that for all $x, y \in D$, xy = 0 implies x = 0 or y = 0.

Proposition

Every field is a domain.

Proof.

Let F be a field, and $x, y \in F$ be such that xy = 0. If $x \neq 0$, then x is invertible, whence $y = 1y = x^{-1}xy = x^{-1}0 = 0$.

Counter-example

 $\ensuremath{\mathbb{Z}}$ is a domain which is not a field.

Polynomials over a domain

Proposition

If D is a domain, then so is the polynomial ring D[x], and we have the rule deg(PQ) = deg P + deg Q for all $P(x), Q(x) \in D[x]$.

Proof.

Let $P(x), Q(x) \in D[x]$, both non zero. We can write $P(x) = a_n x^n + \text{lower terms},$ with $a_n \in D$, $a_n \neq 0$, so that $n = \deg P$; similarly $Q(x) = b_m x^m + \text{lower terms},$ $b_m \neq 0, m = \deg Q$. Then $P(x)Q(x) = a_n b_m x^{n+m} + \text{lower terms},$ and $a_n b_m \neq 0$ since D is a domain. Therefore $PQ \neq 0$, and has degree n + m.

So far, we have

Fields \subsetneq Domains \subsetneq Commutative rings.

<u>Commutative algebra</u> is the branch of mathematics that refines this classification. A ring can be Noetherian, Artinian, a UFD, a PID, Euclidean, integrally closed, local, catenary, Cohen-Macaulay, Gorenstein, excellent, Japanese, ...

We will study some of this concepts in the next chapter.

From now on, in the rest of this module, we only consider commutative rings.

Subrings

Subrings

Definition (Subring)

Let R be a ring. A <u>subring</u> of R is a subset $S \subseteq R$ which contains 1_R and is closed under +, -, and \times .

Example

- \mathbb{Z} is a subring of \mathbb{Q} .
- Let *R* be the ring of continuous functions $\mathbb{R} \longrightarrow \mathbb{R}$. Then smooth functions form a subring of *R*.

Counter-example

- \mathbb{N} is not a subset of \mathbb{Z} , since it is not closed under -.
- Given two nonzero rings R and S, the subset $R \times \{0\} = \{(r, 0) \mid r \in R\}$ of $R \times S$ is closed under +, -, and \times , but it is <u>not</u> a subring since it does not contain $1 = (1_R, 1_S)$.

Proposition

An intersection of subrings is a subring.

Proof.

Let $S_1, S_2, \dots, S_i, \dots$ be subrings, and $S = \bigcap_i S_i$. For all $i, 1 \in S_i$ because S_i is a subring, so $1 \in S$. Let $x, y \in S$. Then for all $i, x, y \in S_i$, so $x + y \in S_i$ because S_i is a subring; thus $x + y \in S$. Similarly for - and \times .

Definition

The subring generated by a subset $S \subset R$ is the smallest subring containing S.

This is the set of elements that we can obtain with $+,-,\times$ from S and 1; alternatively, it is

$$\bigcap_{\substack{T \text{ subring of } R \\ T \supseteq S}} T$$

Example

The subring of
$$\mathbb{C}$$
 generated by *i* is
 $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\},$
which is indeed a subring because
 $(a + bi)(a' + b'i) = (aa' - bb') + (ab' + ba')i.$

Ideals

Ideals

Definition (Ideal)

An ideal of a ring R is a subset $I \subset R$ such that:

• $I \neq \emptyset$,

• For all
$$i, j \in I$$
, $i + j \in I$,

• For all $i \in I$ and $r \in R$, $ri \in I$.

Example

If *F* is the ring of continuous functions $\mathbb{R} \longrightarrow \mathbb{R}$ and if we fix $x_0 \in \mathbb{R}$, then the set of elements of *F* that vanish at $x = x_0$ is an ideal of *F*.

Remark

If I is an ideal, then (I, +) is an Abelian group. Indeed, let $i \in I$; then $-i = (-1)i \in I$, so $0 = i + -i \in I$. So the smallest ideal of R is $I = \{0\}$, and the largest is I = R.

Proper ideals

Lemma

Let
$$I \subseteq R$$
 be an ideal. Then
 $I = R \iff I \ni 1 \iff I \cap R^{\times} \neq \emptyset.$

Proof.

If *I* contains an invertible $u \in R^{\times}$, then $1 = u^{-1}u \in I$. If $I \ni 1$, then for all $r \in R$, $r = r1 \in I$, so $I \supseteq R$, so I = R. If I = R, then $I \cap R^{\times} = R^{\times} \neq \emptyset$ since $R^{\times} \ni 1$.

Corollary

The only subset of R which is both a subring and an ideal is R itself.

Corollary

If R is actually a field, then its only ideals are $\{0\}$ and R itself.

Proposition

An intersection of ideals is a ideal.

Proof.

Let $I_1, I_2, \dots, I_k, \dots$ be subrings, and $I = \bigcap_k I_k$. For all $k, 0 \in I_k$ because I_k is an ideal, so $0 \in I$. Let $i, j \in I$. Then for all $k, i, j \in I_k$, so $i + j \in I_k$ because I_k is an ideal; thus $i + j \in I$. Finally, let $i \in I$ and $r \in R$. Then for all $k, i \in I_k$, so $ri \in I_k$ because I_k is an ideal; thus $ri \in I$.

Operations on ideals

Proposition

An intersection of ideals is a ideal.

Definition

The ideal generated by a subset $S \subseteq R$ is the smallest ideal containing S.

This is the set of elements that we can obtain from S and 0 with +, -, and multiplication by R; alternatively, it is

Example

For $R = \mathbb{Z}$, the ideal generated by $\{4, 10\}$ is the ideal $2\mathbb{Z}$ of even numbers.

Proposition

If
$$I, J \subseteq R$$
 are ideals, then so is
 $I + J = \{i + j \mid i \in I, j \in J\}.$

Proof.

Since *I* and *J* are ideals, they contain 0, so $0 = 0 + 0 \in I + J$. Let $x, y \in I + J$, so x = i + j, y = i' + j', where $i, i' \in I$, $j, j' \in J$. Then $x + y = (i + i') + (j + j') \in I + J$. Let $x \in I + J$, so x = i + j where $i \in I$, $j \in J$, and let $r \in R$. Then $rx = ri + rj \in I + J$ since $ri \in I$, $rj \in J$.

Operations on ideals

Proposition

If
$$I, J \subseteq R$$
 are ideals, then so is

$$IJ = \left\{ \sum_{k=1}^{n} i_k j_k \mid n \in \mathbb{N}, i_k \in I, j_k \in J \right\}.$$

Proof.

Since *I* and *J* are ideals, they contain 0, so $0 = 00 \in IJ$. Let $x, y \in IJ$, so x and y are sums of products of the form $ij, i \in I, j \in J$. Then x + y is a longer such sum, and thus lies in *IJ*. Let $x \in IJ$, so $x = \sum_{k=1}^{n} i_k j_k$, where $n \in \mathbb{N}$ and $i_k \in I, j_k \in J$ for all k, and let $r \in R$. Then $rx = r \sum_{k=1}^{n} i_k j_k = \sum_{k=1}^{n} (ri_k) j_k \in IJ$ since $ri_k \in I$ for all k.

Proposition

An intersection of ideals is a ideal.

Proposition

If
$$I, J \subseteq R$$
 are ideals, then so is
 $I + J = \{i + j \mid i \in I, j \in J\}$

Proposition

If
$$I, J \subseteq R$$
 are ideals, then so is

$$IJ = \left\{ \sum_{k=1}^{n} i_k j_k \mid n \in \mathbb{N}, i_k \in I, j_k \in J \right\}.$$

Principal ideals

Let R be a ring. For $x \in R$, write $(x) = xR = \{xy \mid y \in R\}.$

This is the ideal of R generated by $\{x\}$.

Definition (Principal)

An ideal is <u>principal</u> if it is of the form xR for some $x \in R$. A ring is <u>principal</u> if all its ideals are principal.

Example

We will prove later that \mathbb{Z} is principal, which means that every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$.

Principal ideals

Definition (Principal)

An ideal is <u>principal</u> if it is of the form xR for some $x \in R$. A ring is <u>principal</u> if all its ideals are principal.

Example

We will prove later that \mathbb{Z} is principal, which means that every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$.

Counter-example

Let $R = \mathbb{Z}[x]$, and $I = \{P(x) \in R \mid P(0) \text{ is even}\}$. Then I is an ideal of R, but it is not principal: suppose we $G(x) \in R$ such that I = (G), then as $2 \in I$, 2 = GH for some $H(x) \in R$, so deg $G = \deg H = 0$, so $G = \pm 2$. But then $P(x) = x \in I$ yet is not a multiple of G, absurd. So R is not principal.

Ring morphisms

Definition (Group morphism)

A <u>morphism</u> from a group (G, \cdot) to a group (H, \times) is a function $f : G \longrightarrow H$ which satisfies $f(g \cdot g') = f(g) \times f(g')$ for all $g, g' \in G$.

This automatically implies that $f(e_G) = e_H$, and that $f(g^{-1}) = f(g)^{-1}$ for all $g \in G$.

Reminder: group morphisms

Definition (Group morphism)

A <u>morphism</u> from a group (G, \cdot) to a group (H, \times) is a function $f : G \longrightarrow H$ which satisfies $f(g \cdot g') = f(g) \times f(g')$ for all $g, g' \in G$.

Definition (Image)

The image of a group morphism
$$f : G \longrightarrow H$$
 is

$$Im f = \{f(g) \mid g \in G\} \subseteq H.$$

Im f is a subgroup of H.

Definition (Kernel)

The kernel of a group morphism $f : G \longrightarrow H$ is Ker $f = \{g \in G \mid f(g) = e_H\} \subseteq G$.

Ker f is a normal subgroup of G.

Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A morphism from R to S is a function $f : R \longrightarrow S$ which satisfies:

- For all $x, y \in R$, f(x + y) = f(x) + f(y),
- For all $x, y \in R$, f(xy) = f(x)f(y),

•
$$f(1_R) = 1_S$$
.

Remark

By the first point, f is in particular a group morphism from (R, +) to (S, +), so we automatically have that $f(0_R) = 0_S$, and that f(-x) = -f(x) for all $x \in R$.

f also induces a group morphism from (R^{\times}, \times) to (S^{\times}, \times) . Indeed, if $u \in R^{\times}$, then $f(u)f(u^{-1}) = f(uu^{-1}) = f(1_R) = 1_S$, which means that f(u) is invertible with inverse $f(u)^{-1}$.

Ring morphisms

Definition (Ring morphism)

Let R and S be rings. A <u>morphism</u> from R to S is a function $f : R \longrightarrow S$ which satisfies:

- For all $x, y \in R$, f(x + y) = f(x) + f(y),
- For all $x, y \in R$, f(xy) = f(x)f(y),

•
$$f(1_R) = 1_S$$
.

Example

Let R be a ring, and fix
$$r \in R$$
. Then the evaluation map
 $R[x] \longrightarrow R$
 $P(x) \longmapsto P(r)$
is a singular back size $P(x) \in P[x]$

is a ring morphism. Indeed, given $P(x), Q(x) \in R[x]$, we do have (P+Q)(r) = P(r) + Q(r), (PQ)(r) = P(r)Q(r), and $1_{R[x]}(r) = 1_R$.

Definition (Ring morphism)

Let R and S be rings. A <u>morphism</u> from R to S is a function $f : R \longrightarrow S$ which satisfies:

- For all $x, y \in R$, f(x + y) = f(x) + f(y),
- For all $x, y \in R$, f(xy) = f(x)f(y),

•
$$f(1_R) = 1_S$$
.

Remark

If $f : R \longrightarrow S$ and $g : S \longrightarrow T$ are ring morphisms, then so is $g \circ f : R \longrightarrow T$.

Image of a morphism

Definition (Image of a morphism)

The <u>image</u> of a ring morphism $f : R \longrightarrow S$ is $Im f = \{f(r) \mid r \in R\} \subseteq S.$

Example

Let $f: \begin{array}{ccc} \mathbb{Z}[x] & \longrightarrow & \mathbb{C} \\ P(x) & \longmapsto & P(i) \end{array}$ If $P(x) \in \mathbb{Z}[x]$, then $P(x) = \sum_{k=0}^{n} a_k x^k$ with $a_k \in \mathbb{Z}$ for all k, so $P(i) = \sum_{k=0}^{n} a_k i^k$ is of the form a + bi with $a, b \in \mathbb{Z}$ since $i^k = \pm 1$ or $\pm i$ for all k, so Im $f \subseteq \{a + bi \mid a, b \in \mathbb{Z}\} = \mathbb{Z}[i]$. Conversely, every $a + bi \in \mathbb{Z}[i]$ is reached by $P(x) = a + bx \in \mathbb{Z}[x]$, so $\operatorname{Im} f = \mathbb{Z}[i].$ whence the notation $\mathbb{Z}[i]$.

Image of a morphism

Definition (Image of a morphism)

The image of a ring morphism
$$f : R \longrightarrow S$$
 is

$$Im f = \{f(r) \mid r \in R\} \subseteq S.$$

Proposition

If $f : R \longrightarrow S$ is a ring morphism, then Im f is a subring of S.

Proof.

$$\begin{split} &1_{S} = f(1_{R}) \in \text{Im } f. \\ &\text{Besides, if } s, s' \in \text{Im } f, \text{ then } s = f(r), \ s' = f(r') \text{ for some} \\ &r, r' \in R, \text{ so} \\ &s + s' = f(r) + f(r') = f(r + r') \in \text{Im } f, \\ &s - s' = f(r) - f(r') = f(r) + f(-r') = f(r - r') \in \text{Im } f, \\ &\text{and } ss' = f(r)f(r') = f(rr') \in \text{Im } f. \end{split}$$

Definition (Image of a morphism)

The <u>image</u> of a ring morphism $f : R \longrightarrow S$ is $\operatorname{Im} f = \{f(r) \mid r \in R\} \subseteq S.$

Proposition

If $f : R \longrightarrow S$ is a ring morphism, then Im f is a <u>subring</u> of S.

Remark

f is surjective $\iff \text{Im } f = S$.

Definition (Kernel of a morphism)

The kernel of a ring morphism $f : R \longrightarrow S$ is Ker $f = \{r \in R \mid f(r) = 0_S\} \subseteq R$.

Example

Let *F* be the ring of continuous functions $\mathbb{R} \longrightarrow \mathbb{R}$, and fix $x_0 \in \mathbb{R}$. Then

$$\begin{array}{rccc} F & \longrightarrow & \mathbb{R} \\ f & \longmapsto & f(x_0) \end{array}$$

is a ring morphism, whose kernel is the subset of F formed of the functions which vanish at x_0 .

Kernel of a morphism

Definition (Kernel of a morphism)

The kernel of a ring morphism $f : R \longrightarrow S$ is Ker $f = \{r \in R \mid f(r) = 0_S\} \subseteq R$.

Proposition

If $f : R \longrightarrow S$ is a ring morphism, then Ker f is a <u>ideal</u> of R.

Proof.

 $0_R \in \text{Ker } f \text{ because } f(0_R) = 0_S.$ If $z, z' \in \text{Ker } f$, then $f(z + z') = f(z) + f(z') = 0_S + 0_S = 0_S,$ so $z + z' \in \text{Ker } f.$ If $z \in \text{Ker } f$ and $r \in R$, then $f(rz) = f(r)f(z) = f(r)0_S = 0_S,$ so $rz \in \text{Ker } f.$ Definition (Kernel of a morphism)

The kernel of a ring morphism $f : R \longrightarrow S$ is Ker $f = \{r \in R \mid f(r) = 0_5\} \subseteq R$.

Proposition

If $f : R \longrightarrow S$ is a ring morphism, then Ker f is a ideal of R.

Remark

f is injective \iff Ker $f = \{0\}$. Indeed, \Rightarrow is clear; for \Leftarrow , simply observe that $f(r) = f(r') \Leftrightarrow f(r) - f(r') = 0 \Leftrightarrow f(r - r') = 0 \Leftrightarrow r - r' \in \text{Ker } f$.

Quotient rings

Definition (Relation)

Let X be a set. A <u>relation</u> R on X is a map $X \times X \longrightarrow \{ True, False \}$ $(x, y) \longmapsto xRy,$

Example

•
$$X = \mathbb{R}, R = <.$$

•
$$X = any \text{ set}, R = \neq$$
.

• X = subsets of some fixed set, $R = \subseteq$.

Binary relations

Definition (Relation)

Let X be a set. A <u>relation</u> R on X is a map $X \times X \longrightarrow \{ True, False \}$

$$(x,y) \mapsto xRy,$$

Definition (Equivalence relation)

A relation R on a set X is an <u>equivalence relation</u> if:

- (Reflexive) For all $x \in X$, xRx.
- (Symmetric) For all $x, y \in X$, $xRy \iff yRx$.
- (Transitive) For all $x, y, z \in X$, if xRy and yRz, then xRz.

Example

If $X = \{ \text{People } \}$, then the relation "have the same given name" is an equivalence relation.

Quotient sets

Let X be a set, and let \sim be an equivalence relation on X.

Definition (Equivalence class)

The class of
$$x \in X$$
 is $\overline{x} = \{y \in X \mid y \sim x\}$.

Definition (Quotient set)

The quotient of X by
$$\sim$$
 is $X/\sim = \{\overline{x} \mid x \in X\}$.

It comes with the projection

$$\begin{array}{cccc} X & \longrightarrow & X/\sim \ x & \longmapsto & \overline{x}. \end{array}$$

Example

If
$$X = \{\text{People}\}\ \text{and}\ \sim = \text{``have the same (given) name'', then}$$

$$\overline{x} = \{\ \text{People } y \mid y \text{ has same name as } x\},$$
$$X/\!\sim = \{\{\text{People named } n\} \mid n \text{ a name}\}.$$

Induced maps

Let X be a set, \sim an equivalence relation on X, and $f: X \longrightarrow Y$ a map.

Definition

ONLY if
$$x \sim x' \Longrightarrow f(x) = f(x')$$
, then we can define
 $\overline{f}: X/\sim \longrightarrow Y$
 $\overline{x} \longmapsto f(x)$.

We then say that "f passes to the quotient".

Induced maps

Let X be a set, \sim an equivalence relation on X, and $f: X \longrightarrow Y$ a map.

Definition

ONLY if
$$x \sim x' \Longrightarrow f(x) = f(x')$$
, then we can define
 $\overline{f} : X/\sim \longrightarrow Y$
 $\overline{x} \longmapsto f(x)$.

We then say that "f passes to the quotient".

Example

If $X = \{ \mathsf{People} \}$ and $\sim =$ "have the same full name", then

- If f(x) = Initials of x, then f passes to the quotient.
- If f(x) = age of x, then \overline{f} is not defined.

Quotient structures: the example of groups

Let G be a group. For which \sim on G do we still have a group structure on G/\sim ? In other words, when do the definitions $\overline{g}\overline{h} = \overline{gh}$, $\overline{g}^{-1} = \overline{g^{-1}}$ make sense?

Then $N = \overline{e} = \{g \in G \mid g \sim e\}$ would determine \sim , since $g \sim h \Leftrightarrow \overline{g} = \overline{h} \Leftrightarrow \overline{g}\overline{h}^{-1} = \overline{e} \Leftrightarrow \overline{g}\overline{h}^{-1} = \overline{e} \Leftrightarrow gh^{-1} \in N.$

And we would need
$$\left\{\begin{array}{ccc} g,h\in N \Rightarrow gh\in N,\\ g\in N \Rightarrow g^{-1}\in N,\\ g\in N,h\in G \Rightarrow hgh^{-1}\in N,\\ \end{array}\right.$$
which means $N\triangleleft G.$

Conversely, we check that if $N \triangleleft G$, then \sim defined by

$$g \sim h \Longleftrightarrow gh^{-1} \in N \Longleftrightarrow g = hn$$
 for some $n \in N$

is an equivalence relation such that the group law passes to the quotient. This <u>quotient group</u> is denoted by G/N.

Quotient structures: the example of groups

And we would need
$$\left\{\begin{array}{ccc} g,h\in N \Rightarrow gh\in N,\\ g\in N \Rightarrow g^{-1}\in N,\\ g\in N,h\in G \Rightarrow hgh^{-1}\in N,\\ \end{array}\right.$$
which means $N \triangleleft G.$

Conversely, we check that if $N \triangleleft G$, then \sim defined by

 $g \sim h \iff gh^{-1} \in N \iff g = hn$ for some $n \in N$

is an equivalence relation such that the group law passes to the quotient. This quotient group is denoted by G/N.

For example, to check that $\overline{gh} = \overline{gh}$ makes sense, we must prove that $g \sim g', h \sim h' \Longrightarrow gh \sim g'h'$. And indeed, if g' = gn, h' = hm for some $n, m \in N$, then $(g'h')(gh)^{-1} = gn \underbrace{hmh^{-1}}_{\in N} g^{-1} \in N$. In particular, the projection $G \longrightarrow G/N$ is actually a morphism.

Quotient rings

Let *R* be a ring. For which \sim on *R* do we still have a ring structure on R/\sim by the definitions $\overline{x} + \overline{y} = \overline{x + y}$, $\overline{xy} = \overline{xy}$? Let $I = \overline{0} = \{x \in R \mid x \sim 0\}$. We have $x \sim y \Leftrightarrow \overline{x} = \overline{y} \Leftrightarrow \overline{x} - \overline{y} = \overline{0} \Leftrightarrow \overline{x - y} = \overline{0} \Leftrightarrow x - y \in I$. And we need $\begin{cases} i, j \in I \implies i + j \in I, \\ i \in I, x \in R \implies xi \in I, \end{cases}$ which means that *I* is an ideal of *R*.

Conversely, if I is any ideal of R, then \sim defined by

$$x \sim y \Longleftrightarrow x - y \in I \Longleftrightarrow y = x + i$$
 for some $i \in I$

is an equivalence relation such that + and \times pass to the quotient:

If
$$x \sim x', y \sim y'$$
, then $x' = x + i, y' = y + j$ for some $i, j \in I$,
so $x' + y' = x + y + (i + j) \sim x + y$,
and $x'y' = (x + i)(y + j) = xy + (iy + xj + ij) \sim xy$.

Conversely, if I is any ideal of R, then \sim defined by

$$x \sim y \iff x - y \in I \iff y = x + i$$
 for some $i \in I$

is an equivalence relation such that + and \times pass to the quotient:

If $x \sim x', y \sim y'$, then x' = x + i, y' = y + j for some $i, j \in I$, so $x' + y' = x + y + (i + j) \sim x + y$, and $x'y' = (x + i)(y + j) = xy + (iy + xj + ij) \sim xy$.

This <u>quotient ring</u> is denoted by R/I. Its 0 is $\overline{0}$, its 1 is $\overline{1}$. Besides, we have $-\overline{x} = \overline{-x}$, and the projection $R \longrightarrow R/I$ is a ring morphism. This <u>quotient ring</u> is denoted by R/I. Its 0 is $\overline{0}$, its 1 is $\overline{1}$. Besides, we have $-\overline{x} = \overline{-x}$, and the projection $R \longrightarrow R/I$ is a ring morphism.

Remark

Every ideal $I \triangleleft R$ is a kernel, namely that of $R \rightarrow R/I$.

Every subring $S \subseteq R$ is an image, namely that of $S \hookrightarrow R$.

Example of quotient ring: $\mathbb{Z}/n\mathbb{Z}$

Let $n \in \mathbb{N}$. Then $n\mathbb{Z} = \{nx, x \in \mathbb{Z}\} \subseteq \mathbb{Z}$ is an ideal, so we have the quotient ring $\mathbb{Z}/n\mathbb{Z}$. This is the ring of integers modulo n.

By definition of the quotient, two integers are viewed as the same element of $\mathbb{Z}/n\mathbb{Z}$ iff. they differ by a multiple of *n*.

Example

In
$$\mathbb{Z}/5\mathbb{Z}$$
, we have $\overline{2} \times \overline{3} = \overline{6} = \overline{1}$.

So $\overline{2}$ has become invertible, $\overline{2}^{-1} = \overline{3}$.

In fact, $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ is actually a <u>field</u>!

The isomorphism theorem

Proposition

Let R and S be rings, $f : R \longrightarrow S$ a morphism, and $I \triangleleft R$ an ideal. Then f passes to the quotient into $\overline{f} : R/I \longrightarrow S$ iff. $I \supseteq \text{Ker } f$. In this case, \overline{f} is also a ring morphism, and $\text{Im } \overline{f} = \text{Im } f \subseteq S$.

Induced ring morphisms

Proposition

Let R and S be rings, $f : R \longrightarrow S$ a morphism, and $I \triangleleft R$ an ideal. Then f passes to the quotient into $\overline{f} : R/I \longrightarrow S$ iff. $I \supseteq \text{Ker } f$. In this case, \overline{f} is also a ring morphism, and $\text{Im } \overline{f} = \text{Im } f \subseteq S$.

Proof.

f passes to the quotient iff. f(r) = f(r') whenever $\overline{r} = \overline{r'}$, that is to say whenever $r - r' \in I$. But also $f(r) = f(r') \Leftrightarrow f(r) - f(r') = 0 \Leftrightarrow f(r - r') = 0 \Leftrightarrow r - r' \in \text{Ker } f$, whence the condition.

If \overline{f} exists, then it is automatically a morphism, since $\overline{f}(\overline{x}) + \overline{f}(\overline{y}) = f(x) + f(y) = f(x+y) = \overline{f}(\overline{x+y}) = \overline{f}(\overline{x}+\overline{y})$, and similarly $\overline{f}(\overline{x})\overline{f}(\overline{y}) = \overline{f}(\overline{xy})$ and $\overline{f}(\overline{1}) = f(1) = 1$. Finally Im $\overline{f} = \text{Im } f$ because $\overline{f}(\overline{x}) = f(x)$ by definition of \overline{f} . \Box

The isomorphism theorem

Theorem (First isomorphism theorem)

Let $f : R \longrightarrow S$ be a ring morphism. Then f induces a ring isomorphism $\overline{f} : R / \operatorname{Ker} f \xrightarrow{\sim} \operatorname{Im} f$.

Proof.

By the previous proposition, \overline{f} exists, and is surjective onto $\operatorname{Im} \overline{f} = \operatorname{Im} f$. Besides, for all $\overline{x} \in \operatorname{Ker} \overline{f} \subseteq R/\operatorname{Ker} f$, we have $0 = \overline{f}(\overline{x}) = f(x)$, so $x \in \operatorname{Ker} f$, so $\overline{x} = \overline{0} \in R/\operatorname{Ker} f$; thus $\operatorname{Ker} \overline{f} = \{\overline{0}\}$ so \overline{f} is also injective.

The isomorphism theorem

Theorem (First isomorphism theorem)

Let $f : R \longrightarrow S$ be a ring morphism. Then f induces a ring isomorphism $\overline{f} : R / \operatorname{Ker} f \xrightarrow{\sim} \operatorname{Im} f$.

Proof.

By the previous proposition, \overline{f} exists, and is surjective onto $\operatorname{Im} \overline{f} = \operatorname{Im} f$. Besides, for all $\overline{x} \in \operatorname{Ker} \overline{f} \subseteq R/\operatorname{Ker} f$, we have $0 = \overline{f}(\overline{x}) = f(x)$, so $x \in \operatorname{Ker} f$, so $\overline{x} = \overline{0} \in R/\operatorname{Ker} f$; thus $\operatorname{Ker} \overline{f} = \{\overline{0}\}$ so \overline{f} is also injective.

Theorem (First isomorphism theorem)

Let $f : R \longrightarrow S$ be a ring morphism. Then f induces a ring isomorphism $\overline{f} : R / \operatorname{Ker} f \xrightarrow{\sim} \operatorname{Im} f$.

Proof.

By the previous proposition, \overline{f} exists, and is surjective onto $\operatorname{Im} \overline{f} = \operatorname{Im} f$. Besides, for all $\overline{x} \in \operatorname{Ker} \overline{f} \subseteq R/\operatorname{Ker} f$, we have $0 = \overline{f}(\overline{x}) = f(x)$, so $x \in \operatorname{Ker} f$, so $\overline{x} = \overline{0} \in R/\operatorname{Ker} f$; thus $\operatorname{Ker} \overline{f} = \{\overline{0}\}$ so \overline{f} is also injective.

Application: In order to understand a quotient ring R/I, find a morphism $f : R \longrightarrow S$ such that I = Ker f; then

 $R/I \simeq \operatorname{Im} f \subseteq S.$

Let us apply the isomorphism theorem to the morphism

$$\begin{array}{rccc} f: \mathbb{R}[x] & \longrightarrow & \mathbb{C} \\ P(x) & \longmapsto & P(i) \end{array}$$

Every $a + bi \in \mathbb{C}$ is reached by P(x) = a + bx, so $\text{Im } f = \mathbb{C}$. Thus $\mathbb{R}[x]/\text{Ker } f \simeq \mathbb{C}$.

If
$$P(x) \in \text{Ker } f$$
, then $P(i) = 0$ and $P(-i) = P(\overline{i}) = \overline{P(i)} = 0$,
so $P(x)$ is divisible by $(x - i)(x + i) = x^2 + 1$. Thus
Ker $f = (x^2 + 1) = \{(x^2 + 1)Q(x), Q(x) \in \mathbb{R}[x]\}.$

In conclusion, $\mathbb{C}\simeq\mathbb{R}[x]/(x^2+1)$ is " \mathbb{R} adjoined some x such that $x^2+1=0$ ".