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Reminder: vector spaces

Definition (Vector space over a field)

Let K be a field. A K-vector space is a set V' equipped with
two composition laws

VxV — vV KxV — V
(v,w) — v+w, (\v) — Av

such that (V,+) is an Abelian group, and that for all
A€ K andv,w e V, we have

A(pv) = (An)v, lv=v,

(A + p)v = (Av) + (uv), Av+w) = (Av) + (Aw).
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Modules

Definition (Module over a ring)

Let R be a (not necessarily commutative) ring. An R-module
is a set M equipped with two composition laws

MxM — M RxM — M
(m,n) +— m+n, (A,m) — Am

such that (M, +) is an Abelian group, and that for all
A i€ Rand m,n e M, we have

A(um) = (Ap)m, 1m=m,

(A + p)m = (Am) + (um), A(m+ n) = (Am) + (An).
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Modules: examples

Let R be a ring, and let n € N. Then

R™={(x1, " ,xn) | xi € R}

is an R-module.

Let (G, +) be an Abelian group. Then G is actually
a Z-module:

ng=g+---+g (neZ,g € G).
———

n times
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Submodules

Definition (Submodule)

Let M be an R-module. A submodule of M is a subset of M
which is nonempty and closed under + and under
multiplication by R.

Let M = R, viewed as an R-module. Then the submodules of
M are the ideals of R.
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Generating sets of a module

Definition (Generating set, finitely generated)

Let M be an R-module. Elements my,---,m, € M form a
generating set if every m € M can be expressed in the form

n
m = E )\,-m,-
i=1

for some (not necessarily unique) \; € R.
If such a finite generating set exists, then we say that M is
finitely generated.

Counter-example

Let R be a commutative ring. Then R[x] is an R-module,
which is not finitely generated.
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Linear independence, free modules

Definition (Linearly independent, free)

Let M be an R-module. Elements my,--- ,m, € M are
linearly independent if the only \1,--- , A\, € R satisfying

i/\;m; =0

i=1

are \y = ---= M\, =0.

If furthermore my, - -- , m, form a generating set of M, we say
that M is a free R-module of rank n, and that the m; form a
basis of M. In this case, every m € M can be expressed as

n
m = E )\,-m,-
i=1

for some unique \; € R.
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Free modules: examples

R" is a free R-module of rank n, with basis

61:(1707"' ,0),62:(071,0,"' 70)7 7en:(07"' 7071)'

Counter-example
The Z-module M = Z/2Z is finitely generated, but it is not a
free module.
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Modules vs. vector spaces

In a vector space, one can extract a basis out of any
generating set, and every linearly independent family can be
extended into a basis.

Counter-example

{2,3} is a generating family of the Z-module M = Z, because
n = (—n)2+ (n)3 for all n € Z. But one cannot extract a
basis out of it.

Counter-example

In the Z-module M = Z, the linearly independent family {2}
cannot be extended into a basis.
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Module morphisms
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Morphisms

Definition (Module morphism)

Let M and N be two R-modules. A mapf: M — N is a
morphism if it is R-linear, meaning

f(m+m')=f(m)+ f(m') and f(Am) = Af(m)

for allm,m' € M and \ € R.
A morphism is an isomorphism if it is bijective, in which case
its inverse is automatically a morphism.
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Morphisms: examples

Example

An R-module M is finitely generated iff. there exits n € N and
a surjective morphism R” — M. It is free of rank n iff. it is
isomorphic to R".

Let / C R be a maximal ideal, and let k = R/l be the
corresponding field. Then

R"~R" —= k" ~ k™ =— n=m,

so the rank of a free module is well-defined.
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Kernels and images

Theorem (Kernel and image are submodules)

Let M and N be two R-modules, and f : M — N be a
morphism. Then

Kerf ={me M| f(m)=0}C M
is a submodule of M, and
Imf ={f(m) | me M} CN
is a submodule of N.

f is injective iff. Ker f = {0}, surjective iff. Imf = N, and an
isomorphism iff. it is both.
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Kernels and images: example

Let

p B — 1)

" (x,y) — x—y mod?2.
Then
Im f = 727,
and
Ker f = {(x,y) € Z* | x = y mod 2}

is a free submodule of rank 2 of Z? with basis {(1,1), (1, —1)}.
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Morphisms between free modules

Let M be a free R-module with basis my, my,---. Every
m € M can be expressed uniquely as m = A\ymy + domy + - - -,
and can thus be represented by its coordinates Ay, A\p,--- € R.

Likewise, if N is another free R-module with basis ny, ny,-- -,
then each morphism from M to N may be represented by it
matrix with respect to these bases. Conversely, each matrix (of
the appropriate size) corresponds to a morphism from M to N.

Composition of morphisms corresponds to multiplication of
matrices. In particular, a morphism from M to N is an
isomorphism if and only if its matrix is invertible.
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GL,(R): statement

Let R be a commutative ring and n € N be n integer. Write
M,(R) = {n x n matrices with coefficients in R}

and

Theorem (Invertible matrices over a ring)

GLA(R) = {A € My(R) | detAc R*}.

Nicolas Mascot Rings, fields, and modules



GL,(R): proof and example

If A, B € M,(R) satisfy AB = I, then

1 = det(/,) = det(AB) = det(A) det(B)

so det(A) € R*.
Conversely, every A € M,(R) satisfies

AA = det(A)l,

where A" is the adjugate matrix of A. O]

GLA(Z) = {A € M,(Z) | detA = +1}.
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Quotient modules

Theorem (Construction of quotient modules)

Let M be an R-module, and S C M be a submodule. Then
the quotient set

M/S=M/~, wherem~m <= m—m €S,
inherits an R-module structure. The projection map
M— M/S

is a surjective morphism whose kernel is S.
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The isomorphism theorem for modules

Theorem (Isomorphism theorem for modules)

Let M and N be two R-modules, S C M a submodule, and
f: M — N be a morphism. Then f factors as

M—f N

7
l e
e

M/S

iff. S C Kerf.

In particular, f induces an isomorphism M/ Ker f ~ Imf.
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Modules over a PID:

theorems
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Submodules of free modules

Theorem (Freeness over a PID)

Let R be a PID, and let M be an R-module. If M is free, then
every submodule of M is also free.
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Submodules of free modules

Theorem (Freeness over PID)
Let R be a commutative domain. TFAE:

@ RisaPID,

@ /f M is a free R-module, then all the submodules of M
are also free.
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Proof: necessity of PID

Proof.

R is a free R-module of rank 1, whose submodules are the

ideals of R. Let / # 0 be such an ideal.
If | is free of rank > 2, let iy, ip, - -+ be an R-basis of /. Then

AMi+puh=0 for A\=ih€eR,u=—ih €R,

contradition. So if / is free, it must be of rank 1. Let /; be a
basis; then

= {\i, A€ R} = (i)

is principal.
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Proof: sufficiency of PID

Proof.

Conversely, let M be free of rank n. Then M ~ R", so WLOG
we suppose M = R".

Let S C R" be a sub-R-module, we prove by induction on n
that S is free.

If n =0, then R” = {0}, so S = {0} is free of rank 0.

Suppose true for n — 1. Define

T S — R
(X1>"'7Xn) = Xj

and

So = Kerm={(x1, - ,xn) € S| x, =0}.
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Proof: sufficiency of PID

Proof.

By induction hypothesis, Sy C R""! is free; let s;,--- , s, be a
basis. Besides, Im7 C R is a submodule, hence an ideal, so of
the form gR for some g € R.

If g =0, then Im7 = {0}, so S = Sp, done.

Else, we have g #0. Let s=(--- ,g) € S.

Claim: s;,---,s,,,s is an R-basis of S.

Generating: Let x = (x1, -+ ,x,) € S. Then x, € Im7 = gR,
so x, = gy for some y € R. Then x — ys € S, so is of the
form >, \;s; for some A\; € R. Thus x = >, A;s; + ys.
Linearly independent: Suppose ), A;s; + ys = 0 for some
Ai,y € R. Look at the last coordinate: > . \;0+ yg =0,
whence yg = 0, whence y = 0. So ) . \is; = 0. O
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The Smith normal form

Theorem (SNF & invariant factors)

Let R be a PID, and let A be a matrix with entries in R. It is
possible to turn A into a diagonal matrix with entries

d1|d2|

using a succession of the following operations:
@ Add a multiple of a row of A to another row,
@ Swap two rows of A,
e Add a multiple of a column of A to another column,
@ Swap two columns of A.

The d; are called the invariant factors of A; they are unique up
to associates.
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SNF: proof, case R Euclidean

© Swap rows and columns until one of the nonzero entries
of A of the smallest size is at the top-left corner.

© Use the top-left entry A as a pivot so as to replace all the
terms in the first row and in the first column by their
reminders by a.

)\‘0 .o 0

0
QIfA= . a with A\ dividing all the entries
0
of A, iterate on the block A’. Else, swap rows and
columns again and go to step 2.

O
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Example: SNF over Z

8 4 8
16 14 10
12 12 6
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Example: SNF over Z

8 4 8
12 12 6
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Example: SNF over Z

4 8 8
14 16 10
12 12 6
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Example: SNF over Z

4 8 8
14 16 10
12 12 6

R2 <— R2 — 3R1,
R3 — R3 — 3R,
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Example: SNF over Z
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Example: SNF over Z

4 8 8
2 -8 -—-14
0 —-12 -18

C2 <— C2 — 2C1,
C3 — C3 — 2C1
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Example: SNF over Z
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Example: SNF over Z

4 0 0
2 —12 —18 R2 < Rl
0 —12 -18
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Example: SNF over Z
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Example: SNF over Z
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Example: SNF over Z
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Example: SNF over Z

2 —-12 -18
0 24 36
0 —-12 -18

C2 <— C2 == 6C1,
C3 — C3 + 9C1
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Example: SNF over Z
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Example: SNF over Z
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Example: SNF over Z
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Example: SNF over Z

2 0 0
0 —12 -18 R3 — R3 + 2R,
0 24 36
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Example: SNF over Z

2 0 0
0 —-12 -18
0 0 0
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Example: SNF over Z
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Example: SNF over Z

2 0 O
0 —-12 6
0 0 O
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Example: SNF over Z
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Example: SNF over Z

2 0 O
0 6 —12
00 O
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Example: SNF over Z

2 0
0 6 —12 C3 G C3 +2C2
00

Nicolas Mascot Rings, fields, and modules



Example: SNF over Z

O O N
o O O
o O O
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Example: SNF over Z

O O DN
o O O
o O O

Invariant factors: d; =2 | d, =6 | d; = 0.
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Modules over a PID:

applications
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Application: Finitely generated modules over a PID

Theorem
Let R be a PID, and let M be a finitely generated R-module.
There exist invariant factors

d1|d2|"'ER

such that
M~ (R/diR) x (R/d2R) % - --

These invariant factors are unique up to associates.

R/OR = R, and R/uR = {0} for all u € R*.
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Finitely generated modules over a PID: proof

Let my,---, m, € M generate M; then the morphism

f: RP — M
()\1,"',)\,,) — Zi)\,-m,-

is surjective, so M ~ RP/Ker f by the isomorphism theorem.

Let
N = Kerf C R?;

then N is a free R-module, let ny,--- , ng be a basis. Express
the n; € RP as a p X g matrix A. Operations on the columns
of A amount to changing the basis ny, - - -, ng, and operations
on the rows amount to changing the generators my,--- , m,.
So taking the SNF of A, we get generators mj, mj,--- of M
satisfying the relations d;m} =0 € M. O
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Application: Finitely generated Abelian groups

Corollary (Classification of finitely generated Abelian groups)

Let G be a finitely generated Abelian group. There exist
invariant factors

d1|d2|"'€Z20

such that
G~ (Z/dhZ)x (Z]dZT) x ---

These invariant factors are unique.
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Finitely generated Abelian groups: example

Let G be the Abelian group with generators g, g», g3 and
relations

8g1 + 16g> + 12g3 = 0,

4g1 ¢ 14g2 ¢ 12g3 = 0,

8g1 + 10g> + 6g3 = 0.
Then A = 88 4z21 120 has SNF with invariant factors

2|60,
o)
G ~ (Z/2Z) x (Z/6Z) x Z.
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Application: The rational canonical form (1/6)

From this point on, all the material is non-examinable.

Definition (Companion matrix)
Let K be a field, and let

f(x) =x"+ ap_1x" 1+ -+ ax + a € K[x].

The companion matrix of f is

0 —do
10 —ai
G=| 1 L | e My(K).
0
1 —dp-1
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Application: The rational canonical form (2/6)

Lemma

Let V = K[x]/f(x)K|[x| seen as a K-vector space. Then
1,x,x%,--- ,x%e8f=1 js 3 K-basis of V/, and the matrix of
multiplication by x is Cs.

The characteristic polynomial

det(xln = Cf)

of Cr and the minimal polynomial of Cr are both f € K[x].
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Application: The rational canonical form (3/6)

Corollary (Rational canonical form)

Let K be a field, V' a finite-dimensional K-vector space, and
T € End(V). There exist unique monic polynomials

A [ B0 |- [ fix) € KIX]

such that there exists a basis of V' such that the matrix of T is

The minimal polynomial of T is fi(x), and it characteristic
polynomial is fi(x)f(x) - - - fi(x).
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Application: The rational canonical form (4/6)

Proof.

Put a K[x]-module structure on V by letting xv = T(v) for
all v € V. For instance,

(x> = 1)v = T(T(v)) —v.

Since V has finite dimension over K, it is a finitely generated
K[x]-module. As K|[x] is a PID,

V = (KIX/ACKIX) x - x (KIx/f()K X))

for some unique monic fi(x) | K(x) | --- | ik(x) € K[x]. O
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Application: The rational canonical form (5/6)

Example
Take V = K3 with basis e;, &, €3, and T € End(V) having
matrix B = (E -3 :g)

5-5 -3

The e; generate V over K and hence over K|[x], whence a
surjective K[x]-module morphism f : K[x]* — V taking the
basis £, £, E3 of K[x]? to e;, e, €.

The xE; — T(E;) lie in Ker f, and actually form a basis of it;
so we take the SNF of

x—7 5 5
A= -5 x+3 5 € M;(K[x]).
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Application: The rational canonical form (6/6)

Example
We find the invariant factors

1] (x—2)|(x—=2)(x+3)=x*+x—6,
so as a K[x]-module,

vV~ (K[x]/(1)) x (K[x]/(x = 2)) x (K[x]/(x* + x = 6)),

and the rational canonical form of A is

2/0 O
0[0 6
0/1 -1

In particular, A has minimal polynomial (x — 2)(x + 3) and
characteristic polynomial (x — 2)?(x + 3).
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