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Instructions that apply to all take-home exams

1. This is an open-book exam. You are allowed to use your class notes, textbooks and any material
that is available through the internet. However, you are not allowed to collaborate, seek help from
others, or provide help to others. You are not allowed to post questions on online forums such as
Stack Exchange.

2. If you have any questions about the content of this exam, you may seek clarification from the
lecturer using the e-mail address provided. You are not allowed to discuss this exam with others.

3. Solutions must be submitted through Blackboard by the deadline listed above. You must submit
a single pdf file for each exam separately and sign the following declaration in each case. Please
check that your submission has uploaded correctly.

Plagiarism declaration: I have read and I understand the plagiarism provisions in the General
Regulations of the University Calendar which are available through https://www.tcd.ie/calendar.

Signature:

Additional instructions for this particular exam

This is a mock exam, so ignore the instructions above! It is also longer than the actual exam.
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Question 1 Lucky 13

Factor 1 + 3i into irreducibles in Z[i].

Make sure to justify that your factorization is complete.

Solution 1

Let α = 1 + 3i. We have N(α) = 12 + 32 = 10 = 2 × 5. Since the ireducibles of Z[i] have

norm 2, p ≡ +1 mod 4 a prime, or q2 where q ≡ −1 mod 4 and is prime, we conclude form

the multiplicativity of the norm that α must be of the form π2π5 where π2 (resp. π5) is an

irreducible of norm 2 (resp. 5).

As π2 must be associate to 1 + i, after taking a unit out of π2 and putting it in π5, we

can assume that π2 = 1 + i, so that

π5 = α/(1 + i) =
1 + 3i

1 + i
=

(1 + 3i)(1− i)
2

= 2 + i.

Thus α = (1 + i)(2 + i) is the complete factorization of α.

Question 2 Primes of the form x2 + 4y2

Let p ∈ N be a prime. The goal of this exercise is to give two proofs of the following

statement:

p is of the form x2 + 4y2 with x, y ∈ Z if and only if p ≡ 1 (mod 4). (?)

Suggestion: In some of the questions below, you may find it easier to treat the cases p 6= 2

and p = 2 separately.

1. Find all primitive reduced quadratic forms of discriminant −16.

2. Deduce a proof of (?) using the theory of quadratic forms.

3. Use the theorem on the sum of 2 squares to find another proof of (?).

Hint: 4y2 = (2y)2.
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Solution 2

1. Let ax2 + bxy+ cy2 be a reduced form of discriminant −16. The we know that b must

be even, and that a 6
√

16/3 <
√
6 < 3, so a = 1 or 2. Finally, c = 16+b2

4a
.

For a = 1, we can only take b = 0 since |b| 6 a. This yields c = 4, so we record the

form x2 + 4y2.

For a = 2 we can have b = 0 or b = 2, but not b = −2 (since then we’d have |b| = a

so b would have to be positive). For b = 0, we find c = 2, whence the form 2x2 + 2y2,

but this form is not primitive so we throw it away. For b = 2, we find c = 5/2 which is

not an integer.

In conclusion, there is only one reduced primitive form of discriminant −16, namely

x2 + 4y2.

2. By the previous question, every primitive form of discriminant −16 is equivalent to

x2 + 4y2. Thus if p - 2× 16 is a prime, then p is of the form x2 = 4y2 iff.
(
−16
p

)
= 1.

The condition p - 2× 16 is of course equivalent to p 6= 2; besides, for such p we have

(
−16
p

)
=

(
−1
p

)(
16

p

)
=

(
−1
p

)
= (−1)p′ =

 +1 if p ≡ 1 (mod 4)

3 if p ≡ −1 (mod 4)

Besides, p = 2 is obviously not of the form x2 + 4y2, whence (?).

3. Suppose first that p = 2. Then p 6≡ 1 (mod 4) and p is clearly not fo the form x2+4y2,

so (?) holds.

Suppose now that p 6= 2. The p is odd, sop ≡ 1 or 3 (mod 4). Besides, since p is

prime, it is a sum of 2 squares iff. p 6≡ 3 (mod 4). So if p ≡ 3 (mod 4), then p is not

the sum of 2 squares; a fortiori it is not of the form x2 +4y2 = x2 + (2y)2. Conversely,

if p ≡ 1 (mod 4), then p = a2 + b2 is a sum of 2 squares; then as p is odd, a and b

cannot have the same parity, so without loss of generality we may assume a odd and b

even. If we write b = 2y, then we see that p = a2 + (2y)2 = x2 + 4y2 with x = a. So

we have proved that (?) also holds when p 6= 2.
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Question 3 A Pell-Fermat equation

1. Compute the continued fraction of
√
37.

This means you should somehow find a formula for all the coefficients of the continued

fraction expansion, not just finitely many of them.

2. Use the previous question to find the fundamental solution to the equation x2−37y2 = 1.

Solution 3

1. Let x =
√
37. Since x is a quadratic number, its continued fraction expansion is

ultimately periodic. Let us make this fact explicit.

We set x0 = x, a0 = bx0c = 6.

Then x1 =
1

x0−a0 = 1√
37−6 = 6 +

√
37, so a1 = bx1c = 12.

Then x2 = 1
x1−a1 = 1

6+
√
37−12 = 1√

37−6 = x1, so we see by induction that xn+1 = xn

and an+1 = an for all n > 1.

Thus
√
37 = [6, 12] = [6, 12, 12, 12, · · · ].

2. The first convergent of the continued fraction computed above is p0/q0 = 6/1. Trying

x = 6, y = 1, we find that 62 − 37× 12 = −1.

So in order to find the fundamental solution, all we have to do is square the number

6 + 1×
√
37. We find that

(6 +
√
37)2 = 36 + 12

√
37 + 37 = 73 + 12

√
37,

so the fundamental solution is x = 73, y = 12.

Question 4 Carmichael numbers

1. State Fermat’s little theorem, and explain why it implies that if p ∈ N is prime, then

ap ≡ a (mod p) for all a ∈ Z.
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A Carmichael number is an integer n > 2 which is not prime, but nonetheless satisfies

an ≡ a (mod n) for all a ∈ Z. Note that this can also be written n | (an − a) for all

a ∈ Z.

2. Let n > 2 be a Carmichael number, and let p ∈ N be a prime dividing n. Prove that

p2 - n.

Hint: Apply the definition of a Carmichael number to a particular value of a.

3. Let n > 2 be a Carmichael number. According to the previous question, we may write

n = p1p2 · · · pr

where the pi are distinct primes. Let p be one the the pi.

(a) Recall the definition of a primitive root mod p.

(b) Prove that (p− 1) | (n− 1).

Hint: Consider an a ∈ Z which is a primitive root mod p.

4. Conversely, prove that if an integer m ∈ N is of the form

m = p1p2 · · · pr

where the pi are distinct primes such that (pi− 1) | (m− 1) for all i = 1, 2, · · · , r, then

m is a Carmichael number.

Hint: Prove that pi | (am − a) for all i = 1, · · · , r and all a ∈ Z.

5. Let n > 2 be a Carmichael number. The goal of this question is to prove that n must

have at least 3 distinct prime factors. Note that according to question 2., n cannot

have only 1 prime factor.

Suppose that n has exactly 2 prime factors, so that we may write

n = (x+ 1)(y + 1)

where x, y ∈ N are distinct integers such that x + 1 and y + 1 are both prime. Use

question 3.(b) to prove that x | y, and show that this leads to a contradiction.
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Solution 4

1. Fermat’s little theorem states that for all n ∈ N and for all a ∈ (Z/nZ)×, we have

aφ(n) = 1. In other words, for all a ∈ Z coprime to n, we have aφ(n) ≡ 1 (mod n).

In particular, if n = p is prime, then φ(n) = p− 1, so that for all a ∈ Z not divisible by

p we have ap−1 ≡ 1 (mod p).

Multiplying both sides by a, we get that ap ≡ a (mod p) for all a not divisible by p.

This still holds even if p | a since a and ap are both ≡ 0 (mod p) in this case.

2. Let us take a = p; since n is a Carmichael number, we have n | (pn− p). Now if p2 | n,

we deduce that p2 | (pn − p), whence p2 | p since p | pn as n > 2, which is obviously a

contradiction.

3. (a) A primitive root mod p is an element x ∈ (Z/pZ)× of multiplicative order p− 1;

in other words, such that xm 6= 1 for all 1 6 m < p− 1.

(b) Let a ∈ N be such that (a mod p) is a primitive root mod p. Since n is a

Carmichael number, we have n | (an − a), whence p | (an − a) as p | a. Thus

an ≡ a (mod p). But a 6≡ 0 (mod p) since a is a primitive root mod p, so since

p is prime, a is invertible mod p, so we can simplify by a and get

an−1 ≡ 1 (mod p).

This says that n− 1 is a multiple of the multiplicative order of (a mod p), which

is p− 1 since (a mod p) is a primitive root. Thus (p− 1) | (n− 1).

4. Let p be one of p1, · · · , pr. By assumption, we have m− 1 = (p− 1)q for some q ∈ N.

Let now a ∈ Z. We have

am − a = a(am−1 − 1) = a((ap−1)q − 1),

so if a ≡ 0 (mod p) then am − a ≡ 0 (mod p), whereas if a 6≡ 0 (mod p), then a ∈

(Z/pZ)×, so by Fermat’s little theorem we have ap−1 ≡ 1 (mod p) whence (ap−1)q−1 ≡

1q − 1 = 0 (mod p); so either way am ≡ a (mod p), i.e. p | (am − a).
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This holds for any p ∈ {p1, · · · , pr}, and the pi are coprime since they are distinct

primes, so

m = p1 · · · pr | (am − a).

Since this holds for all a, this means that m is a Carmichael number.

5. By question 3.(b), x = (x+ 1)− 1 divides n− 1 = (x+ 1)(y + 1) = xy + x+ y, so x

divides xy + x + y − x(y + 1) = y. Similarly, we see that y | x, so that x = y, which

contradicts the assumption that x and y are distinct.

Note: The smallest Carmichael number is 561 = 3 × 11 × 17. There are infinitely many

Carmichael numbers; more precisely, it was proved in 1992 that for large enough X, there are

at least X2/7 Carmichael numbers between 1 and X. The existence of Carmichael numbers

means that a simple-minded primality test based on Fermat’s little theorem would not be

rigorous.

Question 5 Sophie Germain and the automatic primitive root

In this exercise, we fix an odd prime p ∈ N such that q = p−1
2

is also prime and q > 5.

1. Prove that p ≡ −1 (mod 3).

Hint: Express p in terms of q. What happens if p ≡ +1 (mod 3)?

2. Express the number of primitive roots in (Z/pZ)× in terms of q.

Hint: What are the prime divisors of p− 1?

3. Let x ∈ (Z/pZ)×. Prove that x is a primitive root if and only if x 6= ±1 and
(
x
p

)
= −1.

Hint: What are the prime divisors of p− 1? (bis)

4. Deduce that x = −3 ∈ (Z/pZ)× is a primitive root.

5. (More difficult) Prove that x = 6 ∈ (Z/pZ)× is a primitive root if and only if q is a

sum of two squares.
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Solution 5

1. Since q > 5, p = 2q + 1 > 11. As p is prime, is is this coprime to 3, so p ≡ 1 or 2

(mod 3). If p = 2q + 1 ≡ 1 (mod 3), e would have 2q ≡ 0 (mod 3), whence q ≡ 0

(mod 3) since 2 is invertible mod 3; in other words 3 | q. Since q > 5 is prime, this is

impossible.

2. This number is φ(φ(p)). As p is prime φ(p) = p− 1, which factors as 2q. Since 2 and

q are distinct primes, we get

φ(p− 1) = φ(2q) = 2q

(
1− 1

2

)(
1− 1

q

)
= q − 1.

3. Let m be the multiplicative order of x. Fermat’s little theorem tells us that m | p− 1 =

2q. Thus m < 2q if and only if m | 2 or m | q. But

m | 2⇐⇒ x2 = 1⇐⇒ (x− 1)(x+ 1) = 0⇐⇒ x = ±1

since Z/pZ is a domain, and

m | q ⇐⇒ xq = 1⇐⇒
(
x

p

)
= 1

since
(
x
p

)
= xp

′
= xq. Besides, in any case

(
x
p

)
= ±1 since x 6= 0, so it is −1 if it is

not +1.

The conclusion follows.

Remark: If
(
x
p

)
= −1, then x cannot be 1, so we could replace the first condition by

x 6= −1.

4. We cannot have −3 = +1 in Z/pZ since this would force p | 4; similarly we cannot

have −3 = −1 either. It thus only remains to check that
(
−3
p

)
= −1. This is indeed

true, since (
−3
p

)
=

(
−1
p

)(
3

p

)
= (−1)q(−1)q

(p
3

)
=

(
−1
3

)
= −1

by quadratic reciprocity and because p ≡ −1 (mod 3) by the first question.

Page 8 of 4

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2021



MAU23101

5. It is again easy to prove that 6 6≡ ±1 (mod p) since this would force p = 5 or 7.

Besides, (
6

p

)
=

(
2

p

)(
3

p

)
=

(
2

p

)
(−1)q

(p
3

)
=

(
2

p

)
since q is odd and p ≡ −1 (mod 3), so 6 is a primitive root if and only if

(
2
p

)
= −1.

To conclude, we now distinguish two cases.

On the one hand, if q is not a sum of two squares, then q = 4k+ 3 for some k ∈ N, so

p = 2q + 1 = 8k + 7, whence
(

2
p

)
= +1 so 6 is not a primitive root.

On the other hand, if q is a sum of two squares, then q = 4k + 1 for some k ∈ N (we

cannot have q = 2 since q > 5), so p = 2q + 1 = 8k + 3, whence
(

2
p

)
= −1 so 6 is a

primitive root.

END
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