
MAU22102-1

Faculty of Engineering, Mathematics and Science

School of Mathematics

JS/SS Maths/TP/TJH Semester 2, 2019

MAU22102 Rings, fields, and modules — Review exam

Dr. Nicolas Mascot

Instructions to Candidates:
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Question 1 Irreducibility

1. Let K be a field. Determine the units of the polynomial ring K[x]. Explain.

2. Let R be a commutative ring. Define what it means for an element of R to be irreducible.

Spell out the definition in the case R = K[x], where K is a field as above.

3. Let again K be a field. For which non-negative integers n > 0 is the polynomial xn

irreducible in K[x]?

4. Give an example of an element of Q[x] which has degree 2020 and is irreducible.

Solution 1

1. Since K is a field, it is a domain, so we have deg(fg) = deg(f) + deg(g) for all

f, g ∈ K[x]. Therefore, if f ∈ K[x]×, then deg f = 0. Thus K[x]× = K× = K \ {0}

since K is a field.

2. An element x ∈ R is irreducible if x is non zero, not a unit, and if whenever x = yz for

some y, z ∈ R, then y ∈ R× or1 z ∈ R×.

Thus an element f(x) of K[x] is irreducible if it is non-constant (this takes care simul-

taneously of non-zero and non-unit) and if the only factorisations f(x) = g(x)h(x) with

g, h ∈ K[x] ar those where g or h is constant (so they look like f = 1
2
· (2f).

3. For n = 0 we have xn = 1 which is a unit and therefore not irreducible in K[x].

For n = 1, we have that xn = x is irreducible, since it is non-constant but cannot be

factored as a product of two non-constant polynomials (because the degree is additive).

Finally, for n > 2 we can write xn = xxn−1, so xn is not irreducible since neither factor

is constant.

So the only n such that xn is irreducible is n = 1.

4. Let p ∈ N be a prime number (e.g. p = 29), and consider f(x) = x2020 + p. It is

Eisenstein at p since it is monic, p divides all the non-leading coefficients, and p2 does

1not both, for else we would have x = yz ∈ R×.
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not divide the constant coefficient. By Eisenstein’s criterion, it is irreducible in Q[x]

(and also in Z[x]).

Question 2 Radicals and extensions

Let α =
√

2i ∈ C, so that α2 = −2, and let K = Q(α).

1. Prove that α is algebraic over Q, and determine its minimal polynomial.

2. Determine [K : Q], and find a Q-basis of K.

3. Let β =
√

2. Using the previous question, prove that β 6∈ K.

4. Is it possible to prove that β 6∈ K by degree considerations only?

5. Determine the minimal polynomial of α over K. Comment

6. Prove that β is algebraic over K, and determine its minimal polynomial over K. Also

7. Let L = K(β). Determine [L : Q], and find a Q-basis of L.

8. Prove that i ∈ L. What are its coordinates on the Q-basis of L that you fond at the

previous question?

9. Is it true that L = C?

Solution 2

1. α is a root of the non-zero polynomial f(x) = x2 + 2 ∈ Q[x], so it is algebraic over Q.

Besides f(x) is irreducible in Q[x] because it is Eisenstein at p = 2 (other possibility:

since it has degree 2, if it factored over Q then it would hve a linear factor, hence a

root in Q; but its roots are ±α and neither is in Q) and it is monic, so it is the minimal

polynomial of α over Q.
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2. d = [K : Q] is the degree of the minimal polynomial of α, hence 2 by the previous

question. We also deduce that

(1, α, α2, · · · , αd−1) = (1, α)

is a Q-basis of K.

3. By the previous question, each element of K is uniquely of the form x+yα for x, y ∈ Q.

So if
√

2 ∈ K, we would have a, b ∈ Q such that
√

2 = a + bα. Squaring yields

2 = a2 + 2abα− 2b2, i.e.

2 + 0α = (a2 − 2b2) + 2abα ∈ K.

Since each element of K is uniquely of the form x + yα for x, y ∈ Q, we can deduce

that a2 − 2b2 = 2 and that 2ab = 0. In particular, one of a or b is 0. This is absurd: if

a = 0, then 2 = a2− 2b2 = −2b2 so b2 = −1 in contradiction with b ∈ Q, and if b = 0,

then 2 = a2 − 2b2 = a2 in contradiction with ∈ Q. Thus
√

2 6∈ K.

4. We prove as in the first question that β is algebraic of degree 2 over Q. So if we had

β ∈ K, we would have Q ⊆ Q(β) ⊆ K whence [K : Q] = [K : Q(β)][Q(β) : Q] i.e.

2 = 2[K : Q(β)]. This is not a contradiction, it just says that [K : Q(β)] = 1, which

means that the inclusion Q(β) ⊆ K would actually be an equality. SO this approach

does not seem to lead anywhere.

5. The minimal polynomial of α over K is NO LONGER f(x) = x2 +2, but x−α ∈ K[x].

The reason is that f(x) becomes reducible in K[x], since it factors a (x − α)(x + α);

in contrast, x − α is monic, and it is irreducible over K because it has degree 1, and

degrees are additive.

In fact, this argument shows that x − α remains irreducible over any extension of K,

so it is the minimal polynomial of α over any extension of K. It is not however the

minimal polynomial of α over Q, since it does not lie in Q[x] because of its constant

term. In summary, over an extension E of Q, the minimal polynomial of α is x − α

if α ∈ E, and x2 + 2 if α 6∈ E (because if it were not x2 + 2, then x2 + 2 would be

reducible E and hence have a root in E, contradiction since its roots are ±α).
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6. β is a root of g(x) = x2 − 2 ∈ K[x] so it is algebraic over K (and even over Q, since

g(x) actually lies in Q[x]). g(x) is monic, and Eisenstein at p = 2 so it is irreducible

over Q, but this does NOT guarantee that x2− 2 remains irreducible over K (compare

with the previous question); all we can deduce from this is that x2 − 2 is the minimal

polynomial of β over Q, but this is not the question!

Suppose g(x) were reducible over K. Then by additivity of the degree, it would have a

linear factor over K, so it would have a root in K. But its roots are ±β, and we have

shown that they do not lie in K, contradiction. So g(x) remains irreducible over K,

and is thus the minimal polynomial of β over K.

7. By the tower law we have [L : Q] = [L : K][K : Q]. We already know that [K : Q] = 2,

and [L : K] = [K(β) : K] is the degree of the minimal polynomial over β over K,

which is 2 by the previous question. So [L : Q] = 4. Besides, we know that (1, α) is

a Q-basis of K, and by a similar argument that (1, β) is a K-basis of L; by the tower

law, we conclude that (1, α, β, αβ) is a Q-basis of L.

Note: See how this question and the previous would collapse if instead of β 6∈ K we

had β ∈ K.

8. Simply note that i = α/β ∈ L since α, β ∈ L and L is a field. Besides, αβ = 2i, so

the coordinates of i on the Q-basis (1, α, β, αβ) of L are (0, 0, 0, 1/2) (which do lie in

Q).

9. Absolutely not! For instance, C contains numbers that are transcendental over Q, such

as π or e, and therefore [C : Q] =∞ (another way to say this is that L, being a finite

extension of Q, is an algebraic extension of Q, so it only contains numbers that are

algebraic over Q, and hence not π nor e).

Note: i ∈ L does not imply that L = C; in fact, the smallest extension of Q containing

i is Q(i) = {a+ bi | a, b ∈ Q}, which is a strict subfield of L. On the other hand, since

by definition C = R(i), any extension of R (not Q) containing i must be at least as

large as C.
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Question 3 Annihilators and torsion elements

Let R be a commutative domain, and let M be an R-module. Given an element m ∈M , we

define its annihilator as the subset

Ann(m) = {r ∈ R | rm = 0}

of R.

1. An example: determine Ann(m) if m = 0.

2. Prove that for any m ∈M , Ann(m) is an ideal of R.

3. We say that an element m ∈M is torsion if its annihilator is not reduced to {0}, i.e. if

there exists r ∈ R, r 6= 0 such that rm = 0, and we define

Mtor = {m ∈M | m is torsion}.

Prove that Mtor is a submodule of M .

4. We say that M is torsion-free if Mtor = {0}. Prove that if M is free of finite rank,

then M is torsion-free.

5. Prove that for any module M , the quotient module M/Mtor is torsion-free.

Solution 3

1. If m = 0, then rm = r0 = 0 for all r ∈ R, so Ann(m) = R.

2. • First of all, 0 ∈ Ann(m) since 0m = 0.

• If a, a′ ∈ Ann(m), i.e. am = a′m = 0, then (a + a′)m = am = a′m = 0, so

a+ a′ ∈ Ann(m).

• If a ∈ Ann(m) and r ∈ R, then (ra)m = r(am) = r0 = 0, so ra ∈ Ann(m).

Thus Ann(m) is an ideal of R.

Remember: To solve this kind of question, proceed in to times: first, determine what

you must prove (i.e remember the definition of an ideal), and then, prove it.
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3. • Let m,m′ ∈ Mtor. By definition, this means we have nonzero elements r, r′ ∈ R

such that rm = 0 = r′m′. Then rr′(m+m′) = rr′m+rr′m′ = r′(rm)+r(r′m) =

r′0 + r0 = 0, and rr′ 6= 0 since r, r′ 6= 0 and R is a domain; this shows that

m+m′ ∈Mtor, so Mtor is stable by sum.

• Let now m ∈Mtor and s ∈ R. By definition, we have a nonzero r ∈M such that

rm = 0. Then r(sm) = (rs)m = (sr)m = s(rm) = s0 = 0, so sm ∈Mtor. This

shows that Mtor is stable by multiplication by R.

Thus Mtor is a submodule of M .

Remember: Same advice as for the previous question!

4. Since M is free of finite rank, it admits a finite R-basis (m1,m2, · · · ). Let m ∈ Mtor.

Then in particular m ∈M , so we can express it (uniquely) as

m = r1m1 + r2m2 + · · ·

for some r1, r2, · · · ∈ R. Since m ∈ Mtor, there exists a nonzero r ∈ R such that

rm = 0. Spelling this out, we get

0 = rm = (rr1)m1 + (rr2)m2 + · · · .

Since the mi form a basis, they are linearly independent, so we must have 0 = rr1 =

rr2 = · · · (shorter: invoke the uniqueness of the decomposition of 0m1 + 0m2 + · · · =

0 = (rr1)m1 + (rr2)m2 + · · · ). Since R is a domain, rr1 = 0 implies r = 0 or r1 = 0,

but r 6= 0 by assumption so r1 = 0. Similarly r2 = 0, etc. Thus

m = r1m1 + r2m2 + · · · = 0m1 + 0m2 + · · · = 0.

This proves that M − tor is reduced to {0}, as wanted.

Remember: Same advice as for the previous questions!

5. Let m̄ ∈ (M/Mtor)tor, we have to prove that m̄ = 0̄. Since m̄ is torsion, there exists a

nonzero r ∈ R such that rm̄ = 0̄. Let m ∈M be an element projecting to m̄ ∈M/Mtor,

then rm projects to rm̄ = 0̄, so rm ∈Mtor by the definition of the quotient. So there
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exists a nonzero s ∈ R such that s(rm) = 0. But then (sr)m = s(rm) = 0, and

sr 6= 0 since r, s 6= 0 by assumption and R is a domain, so m is torsion, i.e. m ∈Mtor.

By ths means that m̄ = 0̄, again by definition of the quotient. So we are done.
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