Coláiste na Tríonóide, Baile Átha Cliath Trinity College Dublin
Ollscoil Átha Cliath | The University of Dublin

Faculty of Engineering, Mathematics and Science School of Mathematics

JS/SS Maths/TP/TJH

Semester 2, 2019
MAU22102 Rings, fields, and modules - Review exam

Dr. Nicolas Mascot

Instructions to Candidates:

This is a review exam, meant to help you prepare for the actual exam.

Question 1 Irreducibility

1. Let K be a field. Determine the units of the polynomial ring $K[x]$. Explain.
2. Let R be a commutative ring. Define what it means for an element of R to be irreducible. Spell out the definition in the case $R=K[x]$, where K is a field as above.
3. Let again K be a field. For which non-negative integers $n \geqslant 0$ is the polynomial x^{n} irreducible in $K[x]$?
4. Give an example of an element of $\mathbb{Q}[x]$ which has degree 2020 and is irreducible.

Solution 1

1. Since K is a field, it is a domain, so we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for all $f, g \in K[x]$. Therefore, if $f \in K[x]^{\times}$, then $\operatorname{deg} f=0$. Thus $K[x]^{\times}=K^{\times}=K \backslash\{0\}$ since K is a field.
2. An element $x \in R$ is irreducible if x is non zero, not a unit, and if whenever $x=y z$ for some $y, z \in R$, then $y \in R^{\times}$or ${ }^{1} z \in R^{\times}$.

Thus an element $f(x)$ of $K[x]$ is irreducible if it is non-constant (this takes care simultaneously of non-zero and non-unit) and if the only factorisations $f(x)=g(x) h(x)$ with $g, h \in K[x]$ ar those where g or h is constant (so they look like $f=\frac{1}{2} \cdot(2 f)$.
3. For $n=0$ we have $x^{n}=1$ which is a unit and therefore not irreducible in $K[x]$.

For $n=1$, we have that $x^{n}=x$ is irreducible, since it is non-constant but cannot be factored as a product of two non-constant polynomials (because the degree is additive).

Finally, for $n \geqslant 2$ we can write $x^{n}=x x^{n-1}$, so x^{n} is not irreducible since neither factor is constant.

So the only n such that x^{n} is irreducible is $n=1$.
4. Let $p \in \mathbb{N}$ be a prime number (e.g. $p=29$), and consider $f(x)=x^{2020}+p$. It is Eisenstein at p since it is monic, p divides all the non-leading coefficients, and p^{2} does

[^0]
Page 2 of 8

not divide the constant coefficient. By Eisenstein's criterion, it is irreducible in $\mathbb{Q}[x]$ (and also in $\mathbb{Z}[x]$).

Question 2 Radicals and extensions

Let $\alpha=\sqrt{2} i \in \mathbb{C}$, so that $\alpha^{2}=-2$, and let $K=\mathbb{Q}(\alpha)$.

1. Prove that α is algebraic over \mathbb{Q}, and determine its minimal polynomial.
2. Determine $[K: \mathbb{Q}]$, and find a \mathbb{Q}-basis of K.
3. Let $\beta=\sqrt{2}$. Using the previous question, prove that $\beta \notin K$.
4. Is it possible to prove that $\beta \notin K$ by degree considerations only?
5. Determine the minimal polynomial of α over K. Comment
6. Prove that β is algebraic over K, and determine its minimal polynomial over K. Also
7. Let $L=K(\beta)$. Determine $[L: \mathbb{Q}]$, and find a \mathbb{Q}-basis of L.
8. Prove that $i \in L$. What are its coordinates on the \mathbb{Q}-basis of L that you fond at the previous question?
9. Is it true that $L=\mathbb{C}$?

Solution 2

1. α is a root of the non-zero polynomial $f(x)=x^{2}+2 \in \mathbb{Q}[x]$, so it is algebraic over \mathbb{Q}. Besides $f(x)$ is irreducible in $\mathbb{Q}[x]$ because it is Eisenstein at $p=2$ (other possibility: since it has degree 2, if it factored over \mathbb{Q} then it would hve a linear factor, hence a root in \mathbb{Q}; but its roots are $\pm \alpha$ and neither is in \mathbb{Q}) and it is monic, so it is the minimal polynomial of α over \mathbb{Q}.

Page 3 of 8
(c) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2020
2. $d=[K: \mathbb{Q}]$ is the degree of the minimal polynomial of α, hence 2 by the previous question. We also deduce that

$$
\left(1, \alpha, \alpha^{2}, \cdots, \alpha^{d-1}\right)=(1, \alpha)
$$

is a \mathbb{Q}-basis of K.
3. By the previous question, each element of K is uniquely of the form $x+y \alpha$ for $x, y \in \mathbb{Q}$. So if $\sqrt{2} \in K$, we would have $a, b \in \mathbb{Q}$ such that $\sqrt{2}=a+b \alpha$. Squaring yields $2=a^{2}+2 a b \alpha-2 b^{2}$, i.e.

$$
2+0 \alpha=\left(a^{2}-2 b^{2}\right)+2 a b \alpha \in K
$$

Since each element of K is uniquely of the form $x+y \alpha$ for $x, y \in \mathbb{Q}$, we can deduce that $a^{2}-2 b^{2}=2$ and that $2 a b=0$. In particular, one of a or b is 0 . This is absurd: if $a=0$, then $2=a^{2}-2 b^{2}=-2 b^{2}$ so $b^{2}=-1$ in contradiction with $b \in \mathbb{Q}$, and if $b=0$, then $2=a^{2}-2 b^{2}=a^{2}$ in contradiction with $\in \mathbb{Q}$. Thus $\sqrt{2} \notin K$.
4. We prove as in the first question that β is algebraic of degree 2 over \mathbb{Q}. So if we had $\beta \in K$, we would have $\mathbb{Q} \subseteq \mathbb{Q}(\beta) \subseteq K$ whence $[K: \mathbb{Q}]=[K: \mathbb{Q}(\beta)][\mathbb{Q}(\beta)$: $\mathbb{Q}]$ i.e. $2=2[K: \mathbb{Q}(\beta)]$. This is not a contradiction, it just says that $[K: \mathbb{Q}(\beta)]=1$, which means that the inclusion $\mathbb{Q}(\beta) \subseteq K$ would actually be an equality. SO this approach does not seem to lead anywhere.
5. The minimal polynomial of α over K is NO LONGER $f(x)=x^{2}+2$, but $x-\alpha \in K[x]$. The reason is that $f(x)$ becomes reducible in $K[x]$, since it factors a $(x-\alpha)(x+\alpha)$; in contrast, $x-\alpha$ is monic, and it is irreducible over K because it has degree 1 , and degrees are additive.

In fact, this argument shows that $x-\alpha$ remains irreducible over any extension of K, so it is the minimal polynomial of α over any extension of K. It is not however the minimal polynomial of α over \mathbb{Q}, since it does not lie in $\mathbb{Q}[x]$ because of its constant term. In summary, over an extension E of \mathbb{Q}, the minimal polynomial of α is $x-\alpha$ if $\alpha \in E$, and $x^{2}+2$ if $\alpha \notin E$ (because if it were not $x^{2}+2$, then $x^{2}+2$ would be reducible E and hence have a root in E, contradiction since its roots are $\pm \alpha$).

Page 4 of 8
(c) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2020
6. β is a root of $g(x)=x^{2}-2 \in K[x]$ so it is algebraic over K (and even over \mathbb{Q}, since $g(x)$ actually lies in $\mathbb{Q}[x]) . g(x)$ is monic, and Eisenstein at $p=2$ so it is irreducible over \mathbb{Q}, but this does NOT guarantee that $x^{2}-2$ remains irreducible over K (compare with the previous question); all we can deduce from this is that $x^{2}-2$ is the minimal polynomial of β over \mathbb{Q}, but this is not the question!

Suppose $g(x)$ were reducible over K. Then by additivity of the degree, it would have a linear factor over K, so it would have a root in K. But its roots are $\pm \beta$, and we have shown that they do not lie in K, contradiction. So $g(x)$ remains irreducible over K, and is thus the minimal polynomial of β over K.
7. By the tower law we have $[L: \mathbb{Q}]=[L: K][K: \mathbb{Q}]$. We already know that $[K: \mathbb{Q}]=2$, and $[L: K]=[K(\beta): K]$ is the degree of the minimal polynomial over β over K, which is 2 by the previous question. So $[L: \mathbb{Q}]=4$. Besides, we know that $(1, \alpha)$ is a \mathbb{Q}-basis of K, and by a similar argument that $(1, \beta)$ is a K-basis of L; by the tower law, we conclude that $(1, \alpha, \beta, \alpha \beta)$ is a \mathbb{Q}-basis of L.

Note: See how this question and the previous would collapse if instead of $\beta \notin K$ we had $\beta \in K$.
8. Simply note that $i=\alpha / \beta \in L$ since $\alpha, \beta \in L$ and L is a field. Besides, $\alpha \beta=2 i$, so the coordinates of i on the \mathbb{Q}-basis $(1, \alpha, \beta, \alpha \beta)$ of L are $(0,0,0,1 / 2)$ (which do lie in $\mathbb{Q})$.
9. Absolutely not! For instance, \mathbb{C} contains numbers that are transcendental over \mathbb{Q}, such as π or e, and therefore $[\mathbb{C}: \mathbb{Q}]=\infty$ (another way to say this is that L, being a finite extension of \mathbb{Q}, is an algebraic extension of \mathbb{Q}, so it only contains numbers that are algebraic over \mathbb{Q}, and hence not π nor e).

Note: $i \in L$ does not imply that $L=\mathbb{C}$; in fact, the smallest extension of \mathbb{Q} containing i is $\mathbb{Q}(i)=\{a+b i \mid a, b \in \mathbb{Q}\}$, which is a strict subfield of L. On the other hand, since by definition $\mathbb{C}=\mathbb{R}(i)$, any extension of \mathbb{R} (not \mathbb{Q}) containing i must be at least as large as \mathbb{C}.

Question 3 Annihilators and torsion elements

Let R be a commutative domain, and let M be an R-module. Given an element $m \in M$, we define its annihilator as the subset

$$
\operatorname{Ann}(m)=\{r \in R \mid r m=0\}
$$

of R.

1. An example: determine $\operatorname{Ann}(m)$ if $m=0$.
2. Prove that for any $m \in M, \operatorname{Ann}(m)$ is an ideal of R.
3. We say that an element $m \in M$ is torsion if its annihilator is not reduced to $\{0\}$, i.e. if there exists $r \in R, r \neq 0$ such that $r m=0$, and we define

$$
M_{\mathrm{tor}}=\{m \in M \mid m \text { is torsion }\} .
$$

Prove that $M_{\text {tor }}$ is a submodule of M.
4. We say that M is torsion-free if $M_{\text {tor }}=\{0\}$. Prove that if M is free of finite rank, then M is torsion-free.
5. Prove that for any module M, the quotient module $M / M_{\text {tor }}$ is torsion-free.

Solution 3

1. If $m=0$, then $r m=r 0=0$ for all $r \in R$, so $\operatorname{Ann}(m)=R$.
2. - First of all, $0 \in \operatorname{Ann}(m)$ since $0 m=0$.

- If $a, a^{\prime} \in \operatorname{Ann}(m)$, i.e. $a m=a^{\prime} m=0$, then $\left(a+a^{\prime}\right) m=a m=a^{\prime} m=0$, so $a+a^{\prime} \in \operatorname{Ann}(m)$.
- If $a \in \operatorname{Ann}(m)$ and $r \in R$, then $(r a) m=r(a m)=r 0=0$, so $r a \in \operatorname{Ann}(m)$.

Thus $\operatorname{Ann}(m)$ is an ideal of R.
Remember: To solve this kind of question, proceed in to times: first, determine what you must prove (i.e remember the definition of an ideal), and then, prove it.

Page 6 of 8
(c) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2020
3. - Let $m, m^{\prime} \in M_{\text {tor }}$. By definition, this means we have nonzero elements $r, r^{\prime} \in R$ such that $r m=0=r^{\prime} m^{\prime}$. Then $r r^{\prime}\left(m+m^{\prime}\right)=r r^{\prime} m+r r^{\prime} m^{\prime}=r^{\prime}(r m)+r\left(r^{\prime} m\right)=$ $r^{\prime} 0+r 0=0$, and $r r^{\prime} \neq 0$ since $r, r^{\prime} \neq 0$ and R is a domain; this shows that $m+m^{\prime} \in M_{\mathrm{tor}}$, so M_{tor} is stable by sum.

- Let now $m \in M_{\text {tor }}$ and $s \in R$. By definition, we have a nonzero $r \in M$ such that $r m=0$. Then $r(s m)=(r s) m=(s r) m=s(r m)=s 0=0$, so $s m \in M_{\text {tor }}$. This shows that $M_{\text {tor }}$ is stable by multiplication by R.

Thus M_{tor} is a submodule of M.
Remember: Same advice as for the previous question!
4. Since M is free of finite rank, it admits a finite R-basis (m_{1}, m_{2}, \cdots). Let $m \in M_{\text {tor }}$. Then in particular $m \in M$, so we can express it (uniquely) as

$$
m=r_{1} m_{1}+r_{2} m_{2}+\cdots
$$

for some $r_{1}, r_{2}, \cdots \in R$. Since $m \in M_{\text {tor }}$, there exists a nonzero $r \in R$ such that $r m=0$. Spelling this out, we get

$$
0=r m=\left(r r_{1}\right) m_{1}+\left(r r_{2}\right) m_{2}+\cdots
$$

Since the m_{i} form a basis, they are linearly independent, so we must have $0=r r_{1}=$ $r r_{2}=\cdots$ (shorter: invoke the uniqueness of the decomposition of $0 m_{1}+0 m_{2}+\cdots=$ $\left.0=\left(r r_{1}\right) m_{1}+\left(r r_{2}\right) m_{2}+\cdots\right)$. Since R is a domain, $r r_{1}=0$ implies $r=0$ or $r_{1}=0$, but $r \neq 0$ by assumption so $r_{1}=0$. Similarly $r_{2}=0$, etc. Thus

$$
m=r_{1} m_{1}+r_{2} m_{2}+\cdots=0 m_{1}+0 m_{2}+\cdots=0 .
$$

This proves that M - tor is reduced to $\{0\}$, as wanted.
Remember: Same advice as for the previous questions!
5. Let $\bar{m} \in\left(M / M_{\text {tor }}\right)_{\text {tor }}$, we have to prove that $\bar{m}=\overline{0}$. Since \bar{m} is torsion, there exists a nonzero $r \in R$ such that $r \bar{m}=\overline{0}$. Let $m \in M$ be an element projecting to $\bar{m} \in M / M_{\text {tor }}$, then $r m$ projects to $r \bar{m}=\overline{0}$, so $r m \in M_{\text {tor }}$ by the definition of the quotient. So there

Page 7 of 8

exists a nonzero $s \in R$ such that $s(r m)=0$. But then $(s r) m=s(r m)=0$, and $s r \neq 0$ since $r, s \neq 0$ by assumption and R is a domain, so m is torsion, i.e. $m \in M_{\text {tor }}$. By ths means that $\bar{m}=\overline{0}$, again by definition of the quotient. So we are done.

[^0]: ${ }^{1}$ not both, for else we would have $x=y z \in R^{\times}$.

