

Faculty of Engineering, Mathematics and Science

School of Mathematics

JS/SS Maths/TP/TJH

Semester 2, 2019

MAU22102 Rings, fields, and modules — Review exam

Dr. Nicolas Mascot

Instructions to Candidates:

This is a review exam, meant to help you prepare for the actual exam.

Question 1 Irreducibility

- 1. Let K be a field. Determine the units of the polynomial ring K[x]. Explain.
- 2. Let R be a commutative ring. Define what it means for an element of R to be *irreducible*. Spell out the definition in the case R = K[x], where K is a field as above.
- Let again K be a field. For which non-negative integers n ≥ 0 is the polynomial xⁿ irreducible in K[x]?
- 4. Give an example of an element of $\mathbb{Q}[x]$ which has degree 2020 and is irreducible.

Solution 1

- 1. Since K is a field, it is a domain, so we have $\deg(fg) = \deg(f) + \deg(g)$ for all $f, g \in K[x]$. Therefore, if $f \in K[x]^{\times}$, then $\deg f = 0$. Thus $K[x]^{\times} = K^{\times} = K \setminus \{0\}$ since K is a field.
- An element x ∈ R is irreducible if x is non zero, not a unit, and if whenever x = yz for some y, z ∈ R, then y ∈ R[×] or¹ z ∈ R[×].

Thus an element f(x) of K[x] is irreducible if it is non-constant (this takes care simultaneously of non-zero and non-unit) and if the only factorisations f(x) = g(x)h(x) with $g, h \in K[x]$ ar those where g or h is constant (so they look like $f = \frac{1}{2} \cdot (2f)$.

3. For n = 0 we have $x^n = 1$ which is a unit and therefore not irreducible in K[x].

For n = 1, we have that $x^n = x$ is irreducible, since it is non-constant but cannot be factored as a product of two non-constant polynomials (because the degree is additive). Finally, for $n \ge 2$ we can write $x^n = xx^{n-1}$, so x^n is not irreducible since neither factor is constant.

So the only n such that x^n is irreducible is n = 1.

4. Let $p \in \mathbb{N}$ be a prime number (e.g. p = 29), and consider $f(x) = x^{2020} + p$. It is Eisenstein at p since it is monic, p divides all the non-leading coefficients, and p^2 does

¹not both, for else we would have $x = yz \in R^{\times}$.

not divide the constant coefficient. By Eisenstein's criterion, it is irreducible in $\mathbb{Q}[x]$ (and also in $\mathbb{Z}[x]$).

Question 2 Radicals and extensions

Let $\alpha = \sqrt{2}i \in \mathbb{C}$, so that $\alpha^2 = -2$, and let $K = \mathbb{Q}(\alpha)$.

- 1. Prove that α is algebraic over \mathbb{Q} , and determine its minimal polynomial.
- 2. Determine $[K : \mathbb{Q}]$, and find a \mathbb{Q} -basis of K.
- 3. Let $\beta = \sqrt{2}$. Using the previous question, prove that $\beta \notin K$.
- 4. Is it possible to prove that $\beta \notin K$ by degree considerations only?
- 5. Determine the minimal polynomial of α over K. Comment
- 6. Prove that β is algebraic over K, and determine its minimal polynomial over K. Also
- 7. Let $L = K(\beta)$. Determine $[L : \mathbb{Q}]$, and find a \mathbb{Q} -basis of L.
- 8. Prove that $i \in L$. What are its coordinates on the Q-basis of L that you fond at the previous question?
- 9. Is it true that $L = \mathbb{C}$?

Solution 2

 α is a root of the non-zero polynomial f(x) = x² + 2 ∈ Q[x], so it is algebraic over Q. Besides f(x) is irreducible in Q[x] because it is Eisenstein at p = 2 (other possibility: since it has degree 2, if it factored over Q then it would hve a linear factor, hence a root in Q; but its roots are ±α and neither is in Q) and it is monic, so it is the minimal polynomial of α over Q.

2. $d = [K : \mathbb{Q}]$ is the degree of the minimal polynomial of α , hence 2 by the previous question. We also deduce that

$$(1, \alpha, \alpha^2, \cdots, \alpha^{d-1}) = (1, \alpha)$$

is a \mathbb{Q} -basis of K.

By the previous question, each element of K is uniquely of the form x+yα for x, y ∈ Q.
So if √2 ∈ K, we would have a, b ∈ Q such that √2 = a + bα. Squaring yields 2 = a² + 2abα - 2b², i.e.

$$2 + 0\alpha = (a^2 - 2b^2) + 2ab\alpha \in K$$

Since each element of K is **uniquely** of the form $x + y\alpha$ for $x, y \in \mathbb{Q}$, we can deduce that $a^2 - 2b^2 = 2$ and that 2ab = 0. In particular, one of a or b is 0. This is absurd: if a = 0, then $2 = a^2 - 2b^2 = -2b^2$ so $b^2 = -1$ in contradiction with $b \in \mathbb{Q}$, and if b = 0, then $2 = a^2 - 2b^2 = a^2$ in contradiction with $\in \mathbb{Q}$. Thus $\sqrt{2} \notin K$.

- 4. We prove as in the first question that β is algebraic of degree 2 over Q. So if we had β ∈ K, we would have Q ⊆ Q(β) ⊆ K whence [K : Q] = [K : Q(β)][Q(β) : Q] i.e. 2 = 2[K : Q(β)]. This is not a contradiction, it just says that [K : Q(β)] = 1, which means that the inclusion Q(β) ⊆ K would actually be an equality. SO this approach does not seem to lead anywhere.
- 5. The minimal polynomial of α over K is NO LONGER f(x) = x²+2, but x − α ∈ K[x]. The reason is that f(x) becomes reducible in K[x], since it factors a (x − α)(x + α); in contrast, x − α is monic, and it is irreducible over K because it has degree 1, and degrees are additive.

In fact, this argument shows that $x - \alpha$ remains irreducible over any extension of K, so it is the minimal polynomial of α over any extension of K. It is not however the minimal polynomial of α over \mathbb{Q} , since it does not lie in $\mathbb{Q}[x]$ because of its constant term. In summary, over an extension E of \mathbb{Q} , the minimal polynomial of α is $x - \alpha$ if $\alpha \in E$, and $x^2 + 2$ if $\alpha \notin E$ (because if it were not $x^2 + 2$, then $x^2 + 2$ would be reducible E and hence have a root in E, contradiction since its roots are $\pm \alpha$).

6. β is a root of g(x) = x² − 2 ∈ K[x] so it is algebraic over K (and even over Q, since g(x) actually lies in Q[x]). g(x) is monic, and Eisenstein at p = 2 so it is irreducible over Q, but this does **NOT** guarantee that x² − 2 remains irreducible over K (compare with the previous question); all we can deduce from this is that x² − 2 is the minimal polynomial of β over Q, but this is not the question!

Suppose g(x) were reducible over K. Then by additivity of the degree, it would have a linear factor over K, so it would have a root in K. But its roots are $\pm\beta$, and we have shown that they do not lie in K, contradiction. So g(x) remains irreducible over K, and is thus the minimal polynomial of β over K.

7. By the tower law we have [L : Q] = [L : K][K : Q]. We already know that [K : Q] = 2, and [L : K] = [K(β) : K] is the degree of the minimal polynomial over β over K, which is 2 by the previous question. So [L : Q] = 4. Besides, we know that (1, α) is a Q-basis of K, and by a similar argument that (1, β) is a K-basis of L; by the tower law, we conclude that (1, α, β, αβ) is a Q-basis of L.

Note: See how this question and the previous would collapse if instead of $\beta \notin K$ we had $\beta \in K$.

- 8. Simply note that i = α/β ∈ L since α, β ∈ L and L is a field. Besides, αβ = 2i, so the coordinates of i on the Q-basis (1, α, β, αβ) of L are (0, 0, 0, 1/2) (which do lie in Q).
- 9. Absolutely not! For instance, C contains numbers that are transcendental over Q, such as π or e, and therefore [C : Q] = ∞ (another way to say this is that L, being a finite extension of Q, is an algebraic extension of Q, so it only contains numbers that are algebraic over Q, and hence not π nor e).

Note: $i \in L$ does not imply that $L = \mathbb{C}$; in fact, the smallest extension of \mathbb{Q} containing i is $\mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$, which is a strict subfield of L. On the other hand, since by definition $\mathbb{C} = \mathbb{R}(i)$, any extension of \mathbb{R} (not \mathbb{Q}) containing i must be at least as large as \mathbb{C} .

Question 3 Annihilators and torsion elements

Let R be a commutative domain, and let M be an R-module. Given an element $m \in M$, we define its *annihilator* as the subset

$$\operatorname{Ann}(m) = \{ r \in R \mid rm = 0 \}$$

of R.

- 1. An example: determine Ann(m) if m = 0.
- 2. Prove that for any $m \in M$, Ann(m) is an ideal of R.
- 3. We say that an element $m \in M$ is *torsion* if its annihilator is not reduced to $\{0\}$, i.e. if there exists $r \in R$, $r \neq 0$ such that rm = 0, and we define

$$M_{tor} = \{ m \in M \mid m \text{ is torsion} \}.$$

Prove that M_{tor} is a submodule of M.

- 4. We say that M is torsion-free if $M_{tor} = \{0\}$. Prove that if M is free of finite rank, then M is torsion-free.
- 5. Prove that for any module M, the quotient module M/M_{tor} is torsion-free.

Solution 3

- 1. If m = 0, then rm = r0 = 0 for all $r \in R$, so Ann(m) = R.
- First of all, $0 \in Ann(m)$ since 0m = 0.
 - If $a, a' \in Ann(m)$, i.e. am = a'm = 0, then (a + a')m = am = a'm = 0, so $a + a' \in Ann(m)$.
 - If $a \in Ann(m)$ and $r \in R$, then (ra)m = r(am) = r0 = 0, so $ra \in Ann(m)$.

Thus Ann(m) is an ideal of R.

Remember: To solve this kind of question, proceed in to times: first, determine what you must prove (i.e remember the definition of an ideal), and then, prove it.

Page 6 of 8

- Let m, m' ∈ M_{tor}. By definition, this means we have nonzero elements r, r' ∈ R such that rm = 0 = r'm'. Then rr'(m+m') = rr'm+rr'm' = r'(rm)+r(r'm) = r'0 + r0 = 0, and rr' ≠ 0 since r, r' ≠ 0 and R is a domain; this shows that m + m' ∈ M_{tor}, so M_{tor} is stable by sum.
 - Let now $m \in M_{tor}$ and $s \in R$. By definition, we have a nonzero $r \in M$ such that rm = 0. Then r(sm) = (rs)m = (sr)m = s(rm) = s0 = 0, so $sm \in M_{tor}$. This shows that M_{tor} is stable by multiplication by R.

Thus M_{tor} is a submodule of M.

Remember: Same advice as for the previous question!

4. Since M is free of finite rank, it admits a finite R-basis (m_1, m_2, \cdots) . Let $m \in M_{tor}$. Then in particular $m \in M$, so we can express it (uniquely) as

$$m = r_1 m_1 + r_2 m_2 + \cdots$$

for some $r_1, r_2, \dots \in R$. Since $m \in M_{tor}$, there exists a nonzero $r \in R$ such that rm = 0. Spelling this out, we get

$$0 = rm = (rr_1)m_1 + (rr_2)m_2 + \cdots$$

Since the m_i form a basis, they are linearly independent, so we must have $0 = rr_1 = rr_2 = \cdots$ (shorter: invoke the uniqueness of the decomposition of $0m_1 + 0m_2 + \cdots = 0 = (rr_1)m_1 + (rr_2)m_2 + \cdots$). Since R is a domain, $rr_1 = 0$ implies r = 0 or $r_1 = 0$, but $r \neq 0$ by assumption so $r_1 = 0$. Similarly $r_2 = 0$, etc. Thus

$$m = r_1 m_1 + r_2 m_2 + \dots = 0 m_1 + 0 m_2 + \dots = 0.$$

This proves that M - tor is reduced to $\{0\}$, as wanted.

Remember: Same advice as for the previous questions!

5. Let $\bar{m} \in (M/M_{tor})_{tor}$, we have to prove that $\bar{m} = \bar{0}$. Since \bar{m} is torsion, there exists a nonzero $r \in R$ such that $r\bar{m} = \bar{0}$. Let $m \in M$ be an element projecting to $\bar{m} \in M/M_{tor}$, then rm projects to $r\bar{m} = \bar{0}$, so $rm \in M_{tor}$ by the definition of the quotient. So there

MAU22102-1

exists a nonzero $s \in R$ such that s(rm) = 0. But then (sr)m = s(rm) = 0, and $sr \neq 0$ since $r, s \neq 0$ by assumption and R is a domain, so m is torsion, i.e. $m \in M_{tor}$. By the means that $\bar{m} = \bar{0}$, again by definition of the quotient. So we are done.