Fields, rings, and modules Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2020/MAU22102/index.html
Version: March 28, 2020

Answers are due for Thursday March 26, 4PM.

Exercise 1 Computations in an extension of \mathbb{Q} (100 pts)
Let $F(x)=x^{3}+2 x-2$, let $\alpha \in \mathbb{C}$ be a root of F, and let $K=\mathbb{Q}(\alpha)$.

1. $(15 \mathrm{pts})$ Prove that $[K: \mathbb{Q}]=3$.
2. (10 pts) Find $a, b, c \in \mathbb{Q}$ such that $\alpha^{4}=a \alpha^{2}+b \alpha+c$. Are a, b, c unique?
3. (15 pts) Find $d, e, f \in \mathbb{Q}$ such that $\frac{1}{\alpha^{2}+\alpha+3}=d \alpha^{2}+e \alpha+f$. Are d, e, f unique?
4. (20 pts) Does $\sqrt{2} \in K$?

Hint: Think in terms of degrees.
5. (20 pts) Find all fields L such that $\mathbb{Q} \subseteq L \subseteq K$.
6. (20 pts) Prove that $\mathbb{Q}\left(\alpha^{2}\right)=K$.

Solution 1

1. $F(x)$ is Eisenstein at 2 which is irreducible in \mathbb{Z}, so $F(x)$ is irreducible in $(\mathbb{Z}[x]$ and) $\mathbb{Q}[x]$. Since it is monic, it is the minimal polynomial of α, so

$$
[K: \mathbb{Q}]=[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg}_{\mathbb{Q}} \alpha=\operatorname{deg} F=3 .
$$

2. Since $0=F(\alpha)=\alpha^{3}+2 \alpha-2$, we have $0=\alpha F(\alpha)=\alpha^{4}+2 \alpha^{2}-2 \alpha$, whence

$$
\alpha^{4}=-2 \alpha^{2}+2 \alpha .
$$

We may thus take $a=-2, b=2, c=0$. In fact, this is the only possibility since $\alpha^{2}, \alpha, 1$ is a \mathbb{Q}-basis of K as $\operatorname{deg}_{\mathbb{Q}} \alpha=3$.
3. We use the Euclidean algorithm, as when we proved that $\mathbb{Q}(\alpha)=\mathbb{Q}[\alpha]$ in the lecture. Dividing $x^{3}+2 x-2$ by $x^{2}+x+3$ yields quotient $x-1$ and remainder 1. Dividing by 1 will yield remainder 0 , so we stop. We have

$$
F(x)=\left(x^{2}+x+3\right)(x-1)+1
$$

so, evaluating at $x=\alpha$, we get

$$
0=\left(\alpha^{2}+\alpha+3\right)(\alpha-1)+1
$$

whence

$$
\frac{1}{\alpha^{2}+\alpha+3}=1-\alpha
$$

We may thus take $d=0, e=-1, f=1$. And gain this is the only possibility since $\alpha^{2}, \alpha, 1$ is a \mathbb{Q}-basis of K.
4. If we had $\sqrt{2} \in K$, then we would have

$$
\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset K
$$

whence

$$
[K: \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=[K: \mathbb{Q}]=3 .
$$

But $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$ by the same logic as in 1 ., since $x^{2}-2$ is Eisenstein at 2 . So we would have $[K: \mathbb{Q}(\sqrt{2})]=3 / 2 \notin \mathbb{N}$, absurd.
5. Given such L, we have

$$
[K: L][L: \mathbb{Q}]=[K: \mathbb{Q}]=3
$$

so $[K: L]=1$ or $[L: \mathbb{Q}]=1$ since 3 is prime. In the first case, $L=K$, and in the second case, $L=\mathbb{Q}$. So the only such L are $L=\mathbb{Q}$ and $L=K$.
6. Let $L=\mathbb{Q}\left(\alpha^{2}\right)$. Then $\mathbb{Q} \subset L$, and $L \subset K$ since $\alpha^{2} \in K$. By the previous question, we deduce that L is either \mathbb{Q} or K. But if $L=\mathbb{Q}$, then $\alpha^{2} \in L=\mathbb{Q}$, so there exists $g \in \mathbb{Q}$ such that $\alpha^{2}-g=0$. Then $G(x)=x^{2}-g \in \mathbb{Q}[x]$ has α as a root, so it is divisible by the minimal polynomial of α, which is $F(x)$; that is, $F \mid G$. But this is absurd, since $\operatorname{deg} F=3$ whereas $\operatorname{deg} G=2$. So $L=K$.

