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Exercise 1 Associate elements (40 pts)

Let R be a commutative domain, and let x, y ∈ R. Recall the notation

(x) = {xz | z ∈ R} ⊆ R,

for the ideal generated by x, and similarly for (y).

1. (20 pts) Prove that (x) ⊆ (y) if and only if there exists z ∈ R such that x = yz
(in other words, if x ∈ (y)).

2. (20 pts) Deduce that (x) = (y) if and only if there exists a unit u ∈ R× such
that x = uy.

Solution 1

1. We prove both implications separately.

Suppose first (x) ⊆ (y). Then in particular x ∈ (y), so thre exists z ∈ R such
that x = yz.

Conversely, suppose there exists z ∈ R such that x = yz. Then every multiple
of x is also a multiple of x, since for all t ∈ R, xt = (yz)t = y(zt). In other
words, we have (x) ⊆ (y).

2. Again, we prove both implications separately.

Suppose first (x) = (y). Then (x) ⊆ (y), so by the above there exists z ∈ R
such that x = yz; but also (y) ⊆ (x), so there exists z′ ∈ R such that
y = xz′. Thus x = yz = xzz′, so x(1 − zz′) = 0. Since R is a domain,
this forces either x = 0 or 1 − zz′ = 0. In the first case (x = 0), we have
y ∈ (y) = (x) = (0) = {0} so y = 0 as well, and we indeed have x = uy for
u = 1 ∈ R× for instance (and for any other u as well). In the second case, we
have zz′ = 1, so z and z′ are units that are inverses of each other; in particular,
we have x = yz with z ∈ R× as desired.

Suppose conversely that there exists u ∈ R× such that x = uy, and let v =
u−1 ∈ R. Then since x = yu we have (x) ⊆ (y) by the previous question,
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and since y = 1y = vuy = vx = xv, we have similarly (y) ⊆ (x), so finally
(x) = (y).

Remark: All in all, this exercise was as much about rings as about logic (to
prove an equivalence, prove both implication; to prove two subsets are equal, prove
that they contain each other, etc.)

Exercise 2 Products of rings (60 pts)

Let R1 an R2 be two rings, neither of which is the 0 ring. Consider the set of pairs

R1 ×R2 = {(x1, x2) | x1 ∈ R1, x2 ∈ R2}.

1. (20 pts) Show that the operations

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2), (x1, x2)× (y1, y2) = (x1 × y1, x2 × y2)

for all x1, y1 ∈ R1 an x2, y2 ∈ R2 define a ring structure on R1×R2. What are
the 0 and the 1 of R1 ×R2?

We call R1×R2 equipped with the above operations the product ring of R1 and
R2.

2. (20 pts) Let R be another ring, and suppose we have a ring isomorphism

φ : R1 ×R2
∼−→ R

between a product ring R1×R2 and R. Prove that there exists an e ∈ R such
that e2 = e but e 6= 0 and e 6= 1. Deduce that R cannot be a domain.

Hint: Take a look at the pair (1, 0) ∈ R1 ×R2.

3. (20 pts) Using the previous question, prove that the ring

F = {f : R −→ R | f continuous}

of continuous functions from R to R, equipped as usual with the laws

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x)

for all f, g ∈ F and x ∈ R, is NOT isomorphic to a product ring R1 ×R2.

Hint: Proceed by contradiction. You may use without proof the following con-
sequence of the intermediate value theorem: If f : R −→ R is continuous
and satisfies f(x) ∈ {0, 1} for all x ∈ R, then f is constant (and thus either
identically 0 or 1).
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Solution 2

1. First of all, we show that the addition thus defined on R1 × R2 gives it the
structure of an Abelian group. This follows from the fact that we have just
put the product operation on R1 × R2, and that the product of two Abelian
groups is an Abeian group. Alternatively, we can (re)prove it as follows:

• Associativity: for all x1, y1, z1 ∈ R1 and x2, y2, z2 ∈ R2, we have(
(x1, x2) + (y1, y2)

)
+ (z1, z2)

=(x1 + y1, x2 + y2) + (z1 + z2)

=
(
(x1 + y1) + z1, (x2 + y2) + z2

)
=
(
x1 + (y1 + z1), x2 + (y2 + z2)

)
=(x1, x2) + (y1 + z1, y2 + z2)

=(x1, x2) +
(
(y1, y2) + (z1, z2)

)
where we have successively used the definition of + on R1 × R2 (twice),
the associativity of the + of R1 and of that of R2, and the definition of
+ on R1 ×R2 (twice more).

• Identity: (0, 0) ∈ R1 × R2 is the identity for + since for all x1 ∈ R1 and
x2 ∈ R2,

(0, 0)+(x1, x2) = (0+x1, 0+x2) = (x1, x2) = (x1+0, x2+0) = (x1, x2)+(0, 0).

• Inverses: For all x1 ∈ R1 and x2 ∈ R2, the inverse of (x1, x2) ∈ R is

−(x1, x2) = (−x1,−x2) ∈ R

since
(x1, x2) + (−x1,−x2) = (x1 − x1, x2 − x2) = (0, 0)

is the identity as shown just above.

• Commutativity: for all x1, y1 ∈ R1 and x2, y2 ∈ R2, we have

(x1, x2)+(y1, y2) = (x1+y1, x2+y2) = (y1+x1, y2+x2) = (y1, y2)+(x1, x2)

using the commutativity of + on R1 and R2 at the second step.

To show that R1 ×R2 is actually a ring, we still need to prove:

• Associativity of ×: this is proved as for the associativity of + above;

• identity of ×: one checks that it is (1, 1) by the same logic as when e
proved that (0, 0) was the identity of + above;

• distributivity on the left: for all x1, y1, z1 ∈ R1 and x2, y2, z2 ∈ R2, we
have

(x1, x2)
(
(y1, y2) + (z1, z2)

)
=(x1, x2)(y1 + z1, y2 + z2)

=
(
x1(y1 + z1), x2(y2 + z2)

)
=(x1y1 + x1z1, x2y2 + x2z2)

=(x1y1, x2y2) + (x1z1, x2z2)

=(x1, x2)(y1, y2) + (x1, x2)(z1, z2),
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using successively the definition of +, that of ×, distributivity in R1 and
in R2, the definition of + again, and that of × again.

• And finally, distributivity on the right (i.e.
(
(x1, x2) + (y1, y2)

)
(z1, z2) =

(x1, x2)(z1, z2) + (y1, y2)(z1, z2)) is proved similarly.

2. Let e′ = (1, 0) ∈ R1 ×R2, and e = φ(e′) ∈ R.

First of all, observe that

e′2 = (1, 0)2 = (12, 02) = (1, 0) = e′.

As a result, we have

e2 = φ(e′)2 = φ(e′2) = φ(e′) = e,

where we used the fact that φ is a morphism at the second step.

Besides, since neither R1nor R2 are the 0 ring, we have 0 6= 1 both in R1

and in R2, so e′ is neither the 0 of R1 × R2 (which is (0, 0), as proved in
the previous question) nor the 1 of R1 × R2 (which is (1, 1), as proved in the
previous question).

Next, φ is an isomorphism, it is injective, so φ(e′) 6= φ(0) and φ(e′) 6= φ(1);
and since φ is a morphism, we have φ(0) = 0 ∈ R and φ(1) = 1 ∈ R. This
shows that e = φ(e′) is neither 0 nor 1.

In particular, R cannot be a domain, for else

0 = e2 − e = e(e− 1)

would force e = 0 or e = 1.

Remark: The converse holds! Indeed, given e ∈ R satisfying e2 = e, define
R1 = eR = (e) and R2 = (1 − e)R = (1 − e). Then R1 an R2, equipped with
the + and × of R, are rings, whose identities for × are respectively e and
1 − e (in particular, they are NOT subrings since they do not have the same
1 as R). In particular, if e 6= 0, 1, then R1 and R2 are not the 0 ring since
their 1 is distinct from their 0. Finally, we have the mutually inverse ring
isomorphisms

R ←→ R1 ×R2

x 7−→
(
ex, (1− e)x

)
ey + (1− e)z ←− [

(
ey, (1− e)z

)
3. It is tempting to try to conclude by showing that F is a domain, but this is

not the case (F is NOT a domain, a seen in class).

Instead, we are going to show that it contains no e as above. Suppose by
contradiction that e(x) ∈ F satisfies e2 = e but e 6= 0, 1, and let x ∈ R.

0 = e(x)− e(x) = e2(x)− e(x) = e(x)2 − e(x) = e(x)
(
e(x)− 1) ∈ R

where we used the definition of × on F at the third step. Since R is a field, it
is a domain, so the above forces e(x) = 0 or e(x) = 1. Since this holds for any
x, we may apply the hint and conclude that e is either the constant function

4



0, or the constant function 1. But these are precisely the 0 an the 1 of the
ring F , so we contradict our assumption that e 6= 0, 1.

In conclusion, F is not isomorphic to a product of rings, even though it is not
a domain.

Remark: The hint relies on the intermediate value theorem, and thus on con-
tinuity. If we drop the continuity assumption, then the hint becomes false:
consider for instance the function e(x) defined by e(x) = 1 if x < 0, and
e(x) = 0 else.

The ring decomposition attached to this e by the converse of the previous ques-
tion (cf. remark above) is simply the restrictions map

{Functions R −→ R} ∼−→ {Functions R<0 −→ R} × {Functions R>0 −→ R}
f 7−→

(
f|R<0

, f|R>0

)
.

In fact, a little reflexion shows that we can keep decomposing. In total, we get
the ring isomorphism

{Functions R −→ R} ' RR

assigning to a function f the “list” of its values f(x) for each x ∈ R. We
cannot decompose further since R, being a field, is a domain.
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