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Answers are due for Thursday February 13rd, 4PM.

Exercise 1 Associate elements (40 pts)

Let R be a commutative domain, and let x,y € R. Recall the notation
(x) ={zz| 2 € R} CR,
for the ideal generated by x, and similarly for (y).

1. (20 pts) Prove that () C (y) if and only if there exists z € R such that = = yz

- (

(in other words, if z € (y)).
-

t

2. (20 pts) Deduce that () = (y) if and only if there exists a unit u € R* such

hat © = uy.

Solution 1

1. We prove both implications separately.

Suppose first (x) C (y). Then in particular x € (y), so thre exists z € R such
that z = yz.

Conversely, suppose there exists z € R such that x = yz. Then every multiple
of z is also a multiple of z, since for all ¢t € R, xt = (yz)t = y(zt). In other
words, we have (z) C (y).

2. Again, we prove both implications separately.

Suppose first () = (y). Then (x) C (y), so by the above there exists z € R
such that * = yz; but also (y) C (z), so there exists z € R such that
y = xz’. Thus © = yz = x22/, so z(1 — 22') = 0. Since R is a domain,
this forces either x = 0 or 1 — 2z’ = 0. In the first case (x = 0), we have
y € (y) = (z) = (0) = {0} so y = 0 as well, and we indeed have z = uy for
u =1 € R* for instance (and for any other u as well). In the second case, we
have 22’ = 1, so z and 2’ are units that are inverses of each other; in particular,
we have x = yz with z € R* as desired.

Suppose conversely that there exists u € R* such that + = uy, and let v =
u~! € R. Then since r = yu we have () C (y) by the previous question,
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and since y = ly = vuy = vx = zv, we have similarly (y) C (x), so finally

(z) = (y).

Remark: All in all, this exercise was as much about rings as about logic (to
prove an equivalence, prove both implication; to prove two subsets are equal, prove
that they contain each other, etc.)

Exercise 2 Products of rings (60 pts)
Let Ry an Ry be two rings, neither of which is the 0 ring. Consider the set of pairs

R1 X R2 = {(561,232) ‘ xr1 € R1,$C2 € Rg}
1. (20 pts) Show that the operations

(1, 22) + (Y1, 92) = (1 + Y1, 22+ y2),  (21,22) X (Y1,92) = (T1 X Y1, T2 X Ya)

for all z1,y; € Ry an x5, ys € Ry define a ring structure on R; X Ry. What are
the 0 and the 1 of Ry x Ry?

We call Ry x Ry equipped with the above operations the product ring of Ry and
R,.

2. (20 pts) Let R be another ring, and suppose we have a ring isomorphism
¢ : R1 X R2 ;> R

between a product ring R, X Ry and R. Prove that there exists an e € R such
that €2 = e but e # 0 and e # 1. Deduce that R cannot be a domain.

Hint: Take a look at the pair (1,0) € Ry X Rj.

3. (20 pts) Using the previous question, prove that the ring
F={f:R— R | f continuous}

of continuous functions from R to R, equipped as usual with the laws

(f+9)(x) = fx) +9(x), (f9)(z) = f(z)g(x)

for all f,g € F and x € R, is NOT isomorphic to a product ring Ry x Rs.

Hint: Proceed by contradiction. You may use without proof the following con-
sequence of the intermediate value theorem: If f : R — R s continuous
and satisfies f(x) € {0,1} for all x € R, then f is constant (and thus either
identically 0 or 1).



Solution 2

1. First of all, we show that the addition thus defined on R; x Ry gives it the
structure of an Abelian group. This follows from the fact that we have just
put the product operation on R; X Ry, and that the product of two Abelian
groups is an Abeian group. Alternatively, we can (re)prove it as follows:

e Associativity: for all xq, 91,21 € Ry and x9, Y2, 20 € Rs, we have

(21, 22) + (Y1, y2)) + (21, 22)
(1 4+ Y1, 2 + y2) + (21 + 22)
((z1 + 1) + 21, (22 + 12) + 22)
(21 + (1 + 21), 22 + (Y2 + 22))
(w1, 22) + (Y1 + 21,92 + 22)
=(z1,22) + ((y1,92) + (21, 22))

where we have successively used the definition of + on R; x Ry (twice),
the associativity of the + of R; and of that of Ry, and the definition of
+ on Ry x Ry (twice more).

e Identity: (0,0) € Ry x Ry is the identity for + since for all z; € R; and
Ty € R?;

(O,O)+(l’1,$2) = (0+$1,0+$2) = (331,[EQ) = ([L’1+O,$2—|—0) = (1’1,I2)+(0,0).

e Inverses: For all x; € Ry and a2 € Ry, the inverse of (z1,x2) € R is
—(Lvl,l’g) = (—ﬂfl, —LEQ) € R
since
(21, 22) + (=21, —22) = (21 — 1,22 — 22) = (0,0)
is the identity as shown just above.

e Commutativity: for all z1,y; € Ry and x5,y € Ry, we have

(1, 22)+(y1,¥2) = (x1+y1, 2+Y2) = (1+21, y2+22) = (Y1, Y2)+ (21, T2)

using the commutativity of + on R; and R, at the second step.

To show that Ry x Rs is actually a ring, we still need to prove:

e Associativity of x: this is proved as for the associativity of + above;

e identity of x: one checks that it is (1,1) by the same logic as when e
proved that (0,0) was the identity of 4+ above;

e distributivity on the left: for all x1,y1,21 € R; and x5, 92,20 € Ry, we
have

(z1, 22) (41, 92) + (21, 22))
(w1, 2) (1 + 21,42 + 22)
r1(y1 + 21), 22 (y2 + 22))
(w11 + T121, Ty + T222)
(T191, T2y2) + (2121, T222)
(1, 22) (Y1, y2) + (21, 2) (21, 22),



using successively the definition of +, that of x, distributivity in R; and
in Ry, the definition of 4+ again, and that of x again.

e And finally, distributivity on the right (i.e. ((z1,22) + (y1,2)) (21, 22) =
(21, 22) (21, 22) + (Y1, y2)(21, 22)) is proved similarly.

2. Let ¢ = (1,0) € Ry X Ry, and e = ¢(¢’) € R.
First of all, observe that

e” = (1,0)> = (1*,0*) = (1,0) = ¢'.
As a result, we have
e’ = ¢(e')? = d(e”) = d(¢) = e,

where we used the fact that ¢ is a morphism at the second step.

Besides, since neither Rinor Ry are the 0 ring, we have 0 # 1 both in Ry
and in Ry, so € is neither the 0 of Ry x Ry (which is (0,0), as proved in
the previous question) nor the 1 of Ry x Ry (which is (1, 1), as proved in the
previous question).

Next, ¢ is an isomorphism, it is injective, so ¢(e’) # ¢(0) and ¢(e') # ¢(1);
and since ¢ is a morphism, we have ¢(0) = 0 € R and ¢(1) = 1 € R. This
shows that e = ¢(¢€’) is neither 0 nor 1.

In particular, R cannot be a domain, for else
0=c*—e=cele—1)

would force e =0 or e = 1.

Remark: The converse holds! Indeed, given e € R satisfying €* = e, define
Ry =eR=(e) and Ry = (1 —e)R = (1 —e). Then Ry an Rs, equipped with
the + and x of R, are rings, whose identilties for X are respectively e and
1 — e (in particular, they are NOT subrings since they do not have the same
1 as R). In particular, if e # 0,1, then Ry and Ry are not the 0 ring since
their 1 is distinct from their 0. Finally, we have the mutually inverse ring
1somorphisms

R — R1 X Rz

x —  (ex, (1 —e)z)

ey+(1—e)z «— (ey,(1—e)z)

3. It is tempting to try to conclude by showing that F' is a domain, but this is
not the case (F' is NOT a domain, a seen in class).
Instead, we are going to show that it contains no e as above. Suppose by
contradiction that e(x) € F satisfies e = e but e # 0,1, and let z € R.
0=-e(z) —e(z) = *(z) — e(x) = e(x)” — e(x) = e(x)(e(x) — 1) €R

where we used the definition of x on F' at the third step. Since R is a field, it
is a domain, so the above forces e(x) = 0 or e(x) = 1. Since this holds for any
x, we may apply the hint and conclude that e is either the constant function



0, or the constant function 1. But these are precisely the 0 an the 1 of the
ring F', so we contradict our assumption that e # 0, 1.

In conclusion, F'is not isomorphic to a product of rings, even though it is not
a domain.

Remark: The hint relies on the intermediate value theorem, and thus on con-
tinuity. If we drop the continuity assumption, then the hint becomes false:
consider for instance the function e(x) defined by e(x) = 1 if x < 0, and
e(r) =0 else.

The ring decomposition attached to this e by the converse of the previous ques-
tion (cf. remark above) is simply the restrictions map

{Functions R — R} —» {Functions R.q — R} x {Functions R, — R}

f — ( foo o

In fact, a little reflexion shows that we can keep decomposing. In total, we get
the ring isomorphism

{Functions R — R} ~ R¥

assigning to a function f the “list” of its values f(x) for each x € R. We
cannot decompose further since R, being a field, is a domain.



