Fields, rings, and modules Exercise sheet 1

https://www.maths.tcd.ie/~mascotn/teaching/2020/MAU22102/index.html
Version: February 12, 2020

Answers are due for Thursday February 13rd, 4PM.

Exercise 1 Associate elements (40 pts)

Let R be a commutative domain, and let $x, y \in R$. Recall the notation

$$
(x)=\{x z \mid z \in R\} \subseteq R,
$$

for the ideal generated by x, and similarly for (y).

1. (20 pts) Prove that $(x) \subseteq(y)$ if and only if there exists $z \in R$ such that $x=y z$ (in other words, if $x \in(y)$).
2. (20 pts) Deduce that $(x)=(y)$ if and only if there exists a unit $u \in R^{\times}$such that $x=u y$.

Solution 1

1. We prove both implications separately.

Suppose first $(x) \subseteq(y)$. Then in particular $x \in(y)$, so thre exists $z \in R$ such that $x=y z$.

Conversely, suppose there exists $z \in R$ such that $x=y z$. Then every multiple of x is also a multiple of x, since for all $t \in R, x t=(y z) t=y(z t)$. In other words, we have $(x) \subseteq(y)$.
2. Again, we prove both implications separately.

Suppose first $(x)=(y)$. Then $(x) \subseteq(y)$, so by the above there exists $z \in R$ such that $x=y z$; but also $(y) \subseteq(x)$, so there exists $z^{\prime} \in R$ such that $y=x z^{\prime}$. Thus $x=y z=x z z^{\prime}$, so $x\left(1-z z^{\prime}\right)=0$. Since R is a domain, this forces either $x=0$ or $1-z z^{\prime}=0$. In the first case $(x=0)$, we have $y \in(y)=(x)=(0)=\{0\}$ so $y=0$ as well, and we indeed have $x=u y$ for $u=1 \in R^{\times}$for instance (and for any other u as well). In the second case, we have $z z^{\prime}=1$, so z and z^{\prime} are units that are inverses of each other; in particular, we have $x=y z$ with $z \in R^{\times}$as desired.

Suppose conversely that there exists $u \in R^{\times}$such that $x=u y$, and let $v=$ $u^{-1} \in R$. Then since $x=y u$ we have $(x) \subseteq(y)$ by the previous question,
and since $y=1 y=v u y=v x=x v$, we have similarly $(y) \subseteq(x)$, so finally $(x)=(y)$.

Remark: All in all, this exercise was as much about rings as about logic (to prove an equivalence, prove both implication; to prove two subsets are equal, prove that they contain each other, etc.)

Exercise 2 Products of rings (60 pts)

Let R_{1} an R_{2} be two rings, neither of which is the 0 ring. Consider the set of pairs

$$
R_{1} \times R_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in R_{1}, x_{2} \in R_{2}\right\}
$$

1. $(20 \mathrm{pts})$ Show that the operations
$\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right), \quad\left(x_{1}, x_{2}\right) \times\left(y_{1}, y_{2}\right)=\left(x_{1} \times y_{1}, x_{2} \times y_{2}\right)$
for all $x_{1}, y_{1} \in R_{1}$ an $x_{2}, y_{2} \in R_{2}$ define a ring structure on $R_{1} \times R_{2}$. What are the 0 and the 1 of $R_{1} \times R_{2}$?

We call $R_{1} \times R_{2}$ equipped with the above operations the product ring of R_{1} and R_{2}.
2. (20 pts) Let R be another ring, and suppose we have a ring isomorphism

$$
\phi: R_{1} \times R_{2} \xrightarrow{\sim} R
$$

between a product ring $R_{1} \times R_{2}$ and R. Prove that there exists an $e \in R$ such that $e^{2}=e$ but $e \neq 0$ and $e \neq 1$. Deduce that R cannot be a domain.
Hint: Take a look at the pair $(1,0) \in R_{1} \times R_{2}$.
3. (20 pts) Using the previous question, prove that the ring

$$
F=\{f: \mathbb{R} \longrightarrow \mathbb{R} \mid f \text { continuous }\}
$$

of continuous functions from \mathbb{R} to \mathbb{R}, equipped as usual with the laws

$$
(f+g)(x)=f(x)+g(x), \quad(f g)(x)=f(x) g(x)
$$

for all $f, g \in F$ and $x \in \mathbb{R}$, is NOT isomorphic to a product ring $R_{1} \times R_{2}$.
Hint: Proceed by contradiction. You may use without proof the following consequence of the intermediate value theorem: If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and satisfies $f(x) \in\{0,1\}$ for all $x \in \mathbb{R}$, then f is constant (and thus either identically 0 or 1).

Solution 2

1. First of all, we show that the addition thus defined on $R_{1} \times R_{2}$ gives it the structure of an Abelian group. This follows from the fact that we have just put the product operation on $R_{1} \times R_{2}$, and that the product of two Abelian groups is an Abeian group. Alternatively, we can (re)prove it as follows:

- Associativity: for all $x_{1}, y_{1}, z_{1} \in R_{1}$ and $x_{2}, y_{2}, z_{2} \in R_{2}$, we have

$$
\begin{aligned}
& \left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)+\left(z_{1}, z_{2}\right) \\
= & \left(x_{1}+y_{1}, x_{2}+y_{2}\right)+\left(z_{1}+z_{2}\right) \\
= & \left(\left(x_{1}+y_{1}\right)+z_{1},\left(x_{2}+y_{2}\right)+z_{2}\right) \\
= & \left(x_{1}+\left(y_{1}+z_{1}\right), x_{2}+\left(y_{2}+z_{2}\right)\right) \\
= & \left(x_{1}, x_{2}\right)+\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
= & \left(x_{1}, x_{2}\right)+\left(\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)\right)
\end{aligned}
$$

where we have successively used the definition of + on $R_{1} \times R_{2}$ (twice), the associativity of the + of R_{1} and of that of R_{2}, and the definition of + on $R_{1} \times R_{2}$ (twice more).

- Identity: $(0,0) \in R_{1} \times R_{2}$ is the identity for + since for all $x_{1} \in R_{1}$ and $x_{2} \in R_{2}$,
$(0,0)+\left(x_{1}, x_{2}\right)=\left(0+x_{1}, 0+x_{2}\right)=\left(x_{1}, x_{2}\right)=\left(x_{1}+0, x_{2}+0\right)=\left(x_{1}, x_{2}\right)+(0,0)$.
- Inverses: For all $x_{1} \in R_{1}$ and $x_{2} \in R_{2}$, the inverse of $\left(x_{1}, x_{2}\right) \in R$ is

$$
-\left(x_{1}, x_{2}\right)=\left(-x_{1},-x_{2}\right) \in R
$$

since

$$
\left(x_{1}, x_{2}\right)+\left(-x_{1},-x_{2}\right)=\left(x_{1}-x_{1}, x_{2}-x_{2}\right)=(0,0)
$$

is the identity as shown just above.

- Commutativity: for all $x_{1}, y_{1} \in R_{1}$ and $x_{2}, y_{2} \in R_{2}$, we have

$$
\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right)=\left(y_{1}, y_{2}\right)+\left(x_{1}, x_{2}\right)
$$

using the commutativity of + on R_{1} and R_{2} at the second step.

To show that $R_{1} \times R_{2}$ is actually a ring, we still need to prove:

- Associativity of \times : this is proved as for the associativity of + above;
- identity of \times : one checks that it is $(1,1)$ by the same logic as when e proved that $(0,0)$ was the identity of + above;
- distributivity on the left: for all $x_{1}, y_{1}, z_{1} \in R_{1}$ and $x_{2}, y_{2}, z_{2} \in R_{2}$, we have

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)\left(\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)\right) \\
= & \left(x_{1}, x_{2}\right)\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
= & \left(x_{1}\left(y_{1}+z_{1}\right), x_{2}\left(y_{2}+z_{2}\right)\right) \\
= & \left(x_{1} y_{1}+x_{1} z_{1}, x_{2} y_{2}+x_{2} z_{2}\right) \\
= & \left(x_{1} y_{1}, x_{2} y_{2}\right)+\left(x_{1} z_{1}, x_{2} z_{2}\right) \\
= & \left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)+\left(x_{1}, x_{2}\right)\left(z_{1}, z_{2}\right),
\end{aligned}
$$

using successively the definition of + , that of \times, distributivity in R_{1} and in R_{2}, the definition of + again, and that of \times again.

- And finally, distributivity on the right (i.e. $\left(\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)\right)\left(z_{1}, z_{2}\right)=$ $\left.\left(x_{1}, x_{2}\right)\left(z_{1}, z_{2}\right)+\left(y_{1}, y_{2}\right)\left(z_{1}, z_{2}\right)\right)$ is proved similarly.

2. Let $e^{\prime}=(1,0) \in R_{1} \times R_{2}$, and $e=\phi\left(e^{\prime}\right) \in R$.

First of all, observe that

$$
e^{\prime 2}=(1,0)^{2}=\left(1^{2}, 0^{2}\right)=(1,0)=e^{\prime}
$$

As a result, we have

$$
e^{2}=\phi\left(e^{\prime}\right)^{2}=\phi\left(e^{\prime 2}\right)=\phi\left(e^{\prime}\right)=e
$$

where we used the fact that ϕ is a morphism at the second step.
Besides, since neither R_{1} nor R_{2} are the 0 ring, we have $0 \neq 1$ both in R_{1} and in R_{2}, so e^{\prime} is neither the 0 of $R_{1} \times R_{2}$ (which is $(0,0)$, as proved in the previous question) nor the 1 of $R_{1} \times R_{2}$ (which is (1,1), as proved in the previous question).
Next, ϕ is an isomorphism, it is injective, so $\phi\left(e^{\prime}\right) \neq \phi(0)$ and $\phi\left(e^{\prime}\right) \neq \phi(1)$; and since ϕ is a morphism, we have $\phi(0)=0 \in \mathbb{R}$ and $\phi(1)=1 \in R$. This shows that $e=\phi\left(e^{\prime}\right)$ is neither 0 nor 1 .
In particular, R cannot be a domain, for else

$$
0=e^{2}-e=e(e-1)
$$

would force $e=0$ or $e=1$.
Remark: The converse holds! Indeed, given $e \in R$ satisfying $e^{2}=e$, define $R_{1}=e R=(e)$ and $R_{2}=(1-e) R=(1-e)$. Then R_{1} an R_{2}, equipped with the + and \times of R, are rings, whose identities for \times are respectively e and $1-e$ (in particular, they are NOT subrings since they do not have the same 1 as R). In particular, if $e \neq 0,1$, then R_{1} and R_{2} are not the 0 ring since their 1 is distinct from their 0. Finally, we have the mutually inverse ring isomorphisms

$$
\begin{array}{rlc}
R & \longleftrightarrow & R_{1} \times R_{2} \\
x & \longmapsto & (e x,(1-e) x) \\
e y+(1-e) z & \longleftrightarrow & (e y,(1-e) z)
\end{array}
$$

3. It is tempting to try to conclude by showing that F is a domain, but this is not the case (F is NOT a domain, a seen in class).
Instead, we are going to show that it contains no e as above. Suppose by contradiction that $e(x) \in F$ satisfies $e^{2}=e$ but $e \neq 0,1$, and let $x \in \mathbb{R}$.

$$
0=e(x)-e(x)=e^{2}(x)-e(x)=e(x)^{2}-e(x)=e(x)(e(x)-1) \in \mathbb{R}
$$

where we used the definition of \times on F at the third step. Since \mathbb{R} is a field, it is a domain, so the above forces $e(x)=0$ or $e(x)=1$. Since this holds for any x, we may apply the hint and conclude that e is either the constant function

0 , or the constant function 1 . But these are precisely the 0 an the 1 of the ring F, so we contradict our assumption that $e \neq 0,1$.

In conclusion, F is not isomorphic to a product of rings, even though it is not a domain.

Remark: The hint relies on the intermediate value theorem, and thus on continuity. If we drop the continuity assumption, then the hint becomes false: consider for instance the function $e(x)$ defined by $e(x)=1$ if $x<0$, and $e(x)=0$ else .
The ring decomposition attached to this e by the converse of the previous question (cf. remark above) is simply the restrictions map
$\{$ Functions $\mathbb{R} \longrightarrow \mathbb{R}\} \xrightarrow{\sim}$ \{Functions $\left.\mathbb{R}_{<0} \longrightarrow \mathbb{R}\right\} \times\left\{\right.$ Functions $\left.\mathbb{R}_{\geqslant 0} \longrightarrow \mathbb{R}\right\}$

$$
f \quad \longmapsto \quad\left(\begin{array}{ccc}
f_{\mathbb{R}_{<0}} & , & f_{\left.\right|_{\mathbb{R} \geqslant 0}}
\end{array}\right) .
$$

In fact, a little reflexion shows that we can keep decomposing. In total, we get the ring isomorphism

$$
\{\text { Functions } \mathbb{R} \longrightarrow \mathbb{R}\} \simeq \mathbb{R}^{\mathbb{R}}
$$

assigning to a function f the "list" of its values $f(x)$ for each $x \in \mathbb{R}$. We cannot decompose further since \mathbb{R}, being a field, is a domain.

