Coláiste na Tríonóide, Baile Átha Cliath Trinity College Dublin
Ollscoil Átha Cliath | The University of Dublin

# Faculty of Engineering, Mathematics and Science School of Mathematics 

JS/SS Maths/TP/TJH

Semester 2, 2019
MAU22102 Rings, fields, and modules - Review exam

Dr. Nicolas Mascot

## Instructions to Candidates:

This is a review exam, meant to help you prepare for the actual exam.

## Question 1 Irreducibility

1. Let $K$ be a field. Determine the units of the polynomial ring $K[x]$. Explain.
2. Let $R$ be a commutative ring. Define what it means for an element of $R$ to be irreducible. Spell out the definition in the case $R=K[x]$, where $K$ is a field as above.
3. Let again $K$ be a field. For which non-negative integers $n \geqslant 0$ is the polynomial $x^{n}$ irreducible in $K[x]$ ?
4. Give an example of an element of $\mathbb{Q}[x]$ which has degree 2020 and is irreducible.

## Question 2 Radicals and extensions

Let $\alpha=\sqrt{2} i \in \mathbb{C}$, so that $\alpha^{2}=-2$, and let $K=\mathbb{Q}(\alpha)$.

1. Prove that $\alpha$ is algebraic over $\mathbb{Q}$, and determine its minimal polynomial.
2. Determine $[K: \mathbb{Q}]$, and find a $\mathbb{Q}$-basis of $K$.
3. Let $\beta=\sqrt{2}$. Using the previous question, prove that $\beta \notin K$.
4. Is it possible to prove that $\beta \notin K$ by degree considerations only?
5. Determine the minimal polynomial of $\alpha$ over $K$. Comment
6. Prove that $\beta$ is algebraic over $K$, and determine its minimal polynomial over $K$. Also
7. Let $L=K(\beta)$. Determine $[L: \mathbb{Q}]$, and find a $\mathbb{Q}$-basis of $L$.
8. Prove that $i \in L$. What are its coordinates on the $\mathbb{Q}$-basis of $L$ that you fond at the previous question?
9. Is it true that $L=\mathbb{C}$ ?

## Question 3 Annihilators and torsion elements

Let $R$ be a commutative domain, and let $M$ be an $R$-module. Given an element $m \in M$, we define its annihilator as the subset

$$
\operatorname{Ann}(m)=\{r \in R \mid r m=0\}
$$

of $R$.

1. An example: determine $\operatorname{Ann}(m)$ if $m=0$.
2. Prove that for any $m \in M, \operatorname{Ann}(m)$ is an ideal of $R$.
3. We say that an element $m \in M$ is torsion if its annihilator is not reduced to $\{0\}$, i.e. if there exists $r \in R, r \neq 0$ such that $r m=0$, and we define

$$
M_{\mathrm{tor}}=\{m \in M \mid m \text { is torsion }\} .
$$

Prove that $M_{\mathrm{tor}}$ is a submodule of $M$.
4. We say that $M$ is torsion-free if $M_{\text {tor }}=\{0\}$. Prove that if $M$ is free of finite rank, then $M$ is torsion-free.
5. Prove that for any module $M$, the quotient module $M / M_{\text {tor }}$ is torsion-free.

