Modules over a ring

Nicolas Mascot

TCD

March 19, 2020

Nicolas Mascot Modules over a ring

Let K be a field. A <u>K-vector space</u> is a set V equipped with two composition laws

such that (V, +) is an Abelian group, and that for all $\lambda, \mu \in K$ and $v, w \in V$, we have

$$\lambda(\mu \mathbf{v}) = (\lambda \mu) \mathbf{v}, \qquad \qquad \mathbf{1} \mathbf{v} = \mathbf{v},$$

 $(\lambda + \mu)\mathbf{v} = (\lambda \mathbf{v}) + (\mu \mathbf{v}), \qquad \lambda(\mathbf{v} + \mathbf{w}) = (\lambda \mathbf{v}) + (\lambda \mathbf{w}).$

Let R be a ring. An <u>R-module</u> is a set M equipped with two composition laws

such that (M, +) is an Abelian group, and that for all $\lambda, \mu \in R$ and $m, n \in M$, we have

 $\lambda(\mu m) = (\lambda \mu)m, \qquad \qquad 1m = m,$

 $(\lambda + \mu)m = (\lambda m) + (\mu m), \qquad \lambda(m + n) = (\lambda m) + (\lambda n).$

Modules: examples

Example

Let *R* be a ring, and let $n \in \mathbb{N}$. Then

$$R^n = \{(x_1, \cdots, x_n) \mid x_i \in R\}$$

is an R-module.

Example

Let (G, +) be an Abelian group. Then G is actually a \mathbb{Z} -module:

$$ng = \underbrace{g + \cdots + g}_{n \text{ times}}$$
 $(n \in \mathbb{Z}, g \in G).$

Let M be an R-module. A <u>submodule</u> of M is a subset of M which is nonempty and closed under + and under multiplication by R.

Example

Let M = R, viewed as an *R*-module. Then the submodules of *M* are the <u>ideals</u> of *R*.

Let M be an R-module. Elements $m_1, \dots, m_n \in M$ form a generating set if every $m \in M$ can be expressed in the form

$$m=\sum_{i=1}^n\lambda_im_i$$

for some (not necessarily unique) $\lambda_i \in R$. If such a finite generating set exists, then we say that M is finitely generated.

Counter-example

Let R be a commutative ring. Then R[x] is an R-module, which is <u>not</u> finitely generated.

Let *M* be an *R*-module. Elements $m_1, \dots, m_n \in M$ are linearly independent if the only $\lambda_1, \dots, \lambda_n \in R$ satisfying

$$\sum_{i=1}^n \lambda_i m_i = 0$$

are $\lambda_1 = \cdots = \lambda_n = 0$.

If furthermore m_1, \dots, m_n form a generating set of M, we say that M is a free R-module of rank n, and that the m_i form a basis of M. In this case, every $m \in M$ can be expressed as

$$m=\sum_{i=1}^n\lambda_im_i$$

for some unique $\lambda_i \in R$.

Example

 R^n is a free *R*-module of rank *n*, with basis

$$e_1 = (1, 0, \cdots, 0), e_2 = (0, 1, 0, \cdots, 0), \cdots, e_n = (0, \cdots, 0, 1).$$

Counter-example

The \mathbb{Z} -module $M = \mathbb{Z}/2\mathbb{Z}$ is finitely generated, but it is <u>not</u> a free module.

In a vector space, one can extract a basis out of any generating set, and every linearly independent family can be extended into a basis.

Counter-example

 $\{2,3\}$ is a generating family of the \mathbb{Z} -module $M = \mathbb{Z}$, because n = (-n)2 + (n)3 for all $n \in \mathbb{Z}$. But one cannot extract a basis out of it.

Counter-example

In the \mathbb{Z} -module $M = \mathbb{Z}$, the linearly independent family {2} cannot be extended into a basis.

Let M and N be two R-modules. A map $f : M \longrightarrow N$ is a morphism if it is R-linear, meaning

f(m + m') = f(m) + f(m') and $f(\lambda m) = \lambda f(m)$

for all $m, m' \in M$ and $\lambda \in R$. A morphism is an <u>isomorphism</u> if it is bijective, in which case its inverse is automatically a morphism.

Example

An *R*-module *M* is finitely generated iff. there exits $n \in \mathbb{N}$ and a surjective morphism $\mathbb{R}^n \longrightarrow M$. It is free of rank *n* iff. it is isomorphic to \mathbb{R}^n .

Remark

Let $I \subset R$ be a maximal ideal, and let k = R/I be the corresponding field. Then

$$R^n \simeq R^m \Longrightarrow k^n \simeq k^m \Longrightarrow n = m,$$

so the rank of a free module is well-defined.

Kernels and images

Theorem

Let M and N be two R-modules, and $f: M \longrightarrow N$ be a morphism. Then

$$\operatorname{Ker} f = \{m \in M \mid f(m) = 0\} \subseteq M$$

is a submodule of M, and

$$\operatorname{Im} f = \{f(m) \mid m \in M\} \subseteq N$$

is a submodule of N.

f is injective iff. Ker $f = \{0\}$, surjective iff. Im f = N, and an isomorphism if it is both.

Example

Let

$$f: \begin{array}{ccc} \mathbb{Z}^2 & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ (x,y) & \longmapsto & x-y \bmod 2. \end{array}$$

Then

$$\operatorname{Im} f = \mathbb{Z}/2\mathbb{Z},$$

and

$$\operatorname{Ker} f = \{(x, y) \in \mathbb{Z}^2 \mid x \equiv y \bmod 2\}$$

is a free submodule of rank 2 of \mathbb{Z}^2 with basis $\{(1,1), (1,-1)\}$.

Let *M* be a free *R*-module with basis m_1, m_2, \cdots . Every $m \in M$ can be expressed uniquely as $m = \lambda_1 m_1 + \lambda_2 m_2 + \cdots$, and can thus be represented by its coordinates $\lambda_1, \lambda_2, \cdots \in R$.

Likewise, if N is another free R-module with basis n_1, n_2, \cdots , then each morphism from M to N may be represented by it matrix with respect to these bases. Conversely, each matrix (of the appropriate size) corresponds to a morphism from M to N.

Composition of morphisms corresponds to multiplication of matrices. In particular, a morphism from M to N is an isomorphism if and only if its matrix is invertible.

Let R be a commutative ring and $n \in \mathbb{N}$ be n integer. Write

 $M_n(R) = \{n \times n \text{ matrices with coefficients in } R\}$

and

$$\operatorname{GL}_n(R) = M_n(R)^{\times}.$$

Theorem

$$\operatorname{GL}_n(R) = \{A \in M_n(R) \mid \det A \in R^{\times}\}.$$

$GL_n(R)$: proof and example

Proof.

If
$$A, B \in M_n(R)$$
 satisfy $AB = 1_n$, then

$$1 = \det(1_n) = \det(AB) = \det(A)\det(B)$$

so
$$\det(A)\in R^{ imes}.$$

Conversely, every $A\in M_n(R)$ satisfies

 $AA' = \det(A)I_n$

where A' is the adjugate matrix of A.

Example

$$\operatorname{GL}_n(\mathbb{Z}) = \{ A \in M_n(\mathbb{Z}) \mid \det A = \pm 1 \}.$$

Theorem

Let M be an R-module, and $S \subseteq M$ be a submodule. Then the quotient set

$$M/S = M/\sim$$
, where $m \sim m' \iff m - m' \in S$,

inherits an R-module structure. The projection map

$$M \longrightarrow M/S$$

is a surjective morphism whose kernel is S.

The isomorphism theorem for modules

Theorem

Let M and N be two R-modules, $S \subseteq M$ a submodule, and $f: M \longrightarrow N$ be a morphism. Then f factors as

iff. $S \subseteq \text{Ker } f$.

In particular, f induces an isomorphism $M/\operatorname{Ker} f \simeq \operatorname{Im} f$.