Fields, rings, and modules Exercise sheet 4

https://www.maths.tcd.ie/~mascotn/teaching/2020/MAU22102/index.html

Version: March 20, 2020

Exercise 1 A non-free module over a non-commutative ring

Let $M_2 = M_2(\mathbb{R})$ be the ring of 2×2 matrices with real entries, and let $V = \mathbb{R}^2$ be the space of column vectors of size 2 with real entries.

- 1. Prove that the natural multiplication $M_2 \times V \longrightarrow V$ gives V the structure of an M_2 -module (so that the elements of V are the "vectors" and the elements of M_2 are the "scalars").
- 2. Find a generating set for the M_2 -module V containing as few elements as possible.
- 3. Prove that V is **not** a free M_2 -module.

Hint: Consider the dimensions of the underlying \mathbb{R} *-vector spaces.*

Exercise 2 Finitely generated Abelian groups

- 1. Let G be the Abelian group with generators g, h and relations 8g + 12h = 6g + 8h = 0. Perform an SNF computation to determine what G is isomorphic to.
- 2. Determine #G. Is G cyclic?
- 3. Find all Abelian groups of order 2020, up to isomorphism.