# Fields, rings, and modules Exercise sheet 3 

https://WWW.maths.tcd.ie/~mascotn/teaching/2020/MAU22102/index.html
Version: March 11, 2020

Answers are due for Thursday March 19, 4PM.

Exercise 1 Computations in an extension of $\mathbb{Q}(100 \mathrm{pts})$
Let $F(x)=x^{3}+2 x-2$, let $\alpha \in \mathbb{C}$ be a root of $F$, and let $K=\mathbb{Q}(\alpha)$.

1. ( 15 pts ) Prove that $[K: \mathbb{Q}]=3$.
2. ( 10 pts ) Find $a, b, c \in \mathbb{Q}$ such that $\alpha^{4}=a \alpha^{2}+b \alpha+c$. Are $a, b, c$ unique?
3. ( 15 pts ) Find $d, e, f \in \mathbb{Q}$ such that $\frac{1}{\alpha^{2}+\alpha+3}=d \alpha^{2}+e \alpha+f$. Are $d, e, f$ unique?
4. $(20 \mathrm{pts})$ Does $\sqrt{2} \in K$ ?

Hint: Think in terms of degrees.
5. (20 pts) Find all fields $L$ such that $\mathbb{Q} \subseteq L \subseteq K$.
6. $(20 \mathrm{pts})$ Prove that $\mathbb{Q}\left(\alpha^{2}\right)=K$.

