Fields, rings, and modules Exercise sheet 1

https://www.maths.tcd.ie/~mascotn/teaching/2020/MAU22102/index.html
Version: February 4, 2020

Answers are due for Thursday February 13rd, 4PM.

Exercise 1 Associate elements (40 pts)
Let R be a commutative domain, and let $x, y \in R$. Recall the notation

$$
(x)=\{x z \mid z \in R\} \subseteq R,
$$

for the ideal generated by x, and similarly for (y).

1. (20 pts) Prove that $(x) \subseteq(y)$ if and only if there exists $z \in R$ such that $x=y z$ (in other words, if $x \in(y)$).
2. (20 pts) Deduce that $(x)=(y)$ if and only if there exists a unit $u \in R^{\times}$such that $x=u y$.

Exercise 2 Products of rings (60 pts)

Let R_{1} an R_{2} be two rings, neither of which is the 0 ring. Consider the set of pairs

$$
R_{1} \times R_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in R_{1}, x_{2} \in R_{2}\right\} .
$$

1. (20 pts) Show that the operations
$\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right), \quad\left(x_{1}, x_{2}\right) \times\left(y_{1}, y_{2}\right)=\left(x_{1} \times y_{1}, x_{2} \times y_{2}\right)$
for all $x_{1}, y_{1} \in R_{1}$ an $x_{2}, y_{2} \in R_{2}$ define a ring structure on $R_{1} \times R_{2}$. What are the 0 and the 1 of $R_{1} \times R_{2}$?

We call $R_{1} \times R_{2}$ equipped with the above operations the product ring of R_{1} and R_{2}.
2. (20 pts) Let R be another ring, and suppose we have a ring isomorphism

$$
\phi: R_{1} \times R_{2} \xrightarrow{\sim} R
$$

between a product ring $R_{1} \times R_{2}$ and R. Prove that there exists an $e \in R$ such that $e^{2}=e$ but $e \neq 0$ and $e \neq 1$. Deduce that R cannot be a domain.
Hint: Take a look at the pair $(1,0) \in R_{1} \times R_{2}$.
3. (20 pts) Using the previous question, prove that the ring

$$
F=\{f: \mathbb{R} \longrightarrow \mathbb{R} \mid f \text { continuous }\}
$$

of continuous functions from \mathbb{R} to \mathbb{R}, equipped as usual with the laws

$$
(f+g)(x)=f(x)+g(x), \quad(f g)(x)=f(x) g(x)
$$

for all $f, g \in F$ and $x \in \mathbb{R}$, is NOT isomorphic to a product ring $R_{1} \times R_{2}$.
Hint: Proceed by contradiction. You may use without proof the following consequence of the intermediate value theorem: If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and satisfies $f(x) \in\{0,1\}$ for all $x \in \mathbb{R}$, then f is constant (and thus either identically 0 or 1).

