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Instructions to Candidates:

This is a mock exam, and is intended for revision purposes only.
This paper contains five questions. You must attempt four of them: question 1,
and exactly three of questions 2, 3, 4, and 5.
Should you attempt all questions (not recommended), you will only get the marks
for question 1 and the best three others.
Non-programmable calculators are permitted for this examination.

You may not start this examination until you are instructed to do so by the Invigi-
lator.
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Question 1 Bookwork

Let K ⊂ L be a finite extension, and let Ω ⊃ K be algebraically closed. Which inequalities

do we always have between [L : K], # AutK(L), # HomK(L,Ω)? When are they equalities?

State equivalent conditions.

Solution 1

We always have

# AutK(L) ≤ # HomK(L,Ω) ≤ [L : K].

The left inequality is an equality iff. L is normal over K, which means tht there exists

F (x) ∈ K[x] such that L is (K-isomorphic to) the splitting field of F over K. An equivalent

characterisation is that any irreducible P (x) ∈ K[x] having one root in L must split completely

over L.

The right inequality is an equality iff. L is a separable extension of K, which means that

the minpoly over K of any element of L is separable.

Question 2 Correspondence in degree 3

Let K be a field, and F (x) ∈ K[x] be separable and of degree 3. Denote its 3 roots in its

splitting field L by α1, α2, α3.

1. What are the possibilities for GalK(F )? How can you tell them apart?

2. For each of the cases found in the previous question, sketch the diagram showing all

the fields K ⊂ E ⊂ L and identifying these fields. In particular, locate K(α1), K(α2),

K(α3), K(α1, α2), etc.

3. In which of the cases above is the stem field of F isomorphic to its splitting field?

(Warning: there is a catch in this question.)
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Solution 2

Some general remarks first. In any case, GalK(F ) is a subgroup of S3 acting on the roots

of F ; the only such subgroups are S3, A3, {Id×S2}, and {Id}. Besides, we know that

α1 + α2 + α3 ∈ K by Vieta’s formulas (it is the negative of the coefficient of x2 in F ), so

α3 = (α1 + α2 + α3)− α1 − α2 ∈ K(α1, α2; as a result, we always have

K(α1, α2) = K(α1, α2, α3).

We can also recover this fact by Galois theory: if σ ∈ Gal(K(α1, α2, α3)/K(α1, α2)), then

σ ∈ §3 fixes 1 and 2, so it must be the identity. Therefore K(α1, α2, α3) and K(α1, α2) both

correspond to the same subgroup, namely {Id}, so they are the same field.

Similarly, we have

K(α1, α3) = K(α2, α3) = K(α1, α2, α3).

Let us now examine the possible cases.

Suppose first that F is irreducible over K, and that discF is not a square in K. Then

GalK(F ) is a transitive subgroup not contained in A3, so it is S3. To find the intermediate

fields, we start with the subgroups:

{Id}
2

2
2

3{Id, (12)}

3

{Id, (23)}

3

{Id, (13)}

3 A3

2

S3

Since {Id, (23)} is the stabiliser of α1, the corresponding field is K(α1), which is indeed an

extension of K of degree 3 since F , being irreducible, is the minpoly of α1. Similarly for

K(α2) and K(α3). Finally, let E correspond to A3; then the extension E ⊂ K(α1, α2, α3) is

Page 3 of 10

c© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2019



MAU34101-1

Galois of Galois group A3, so discF is a square in E. Besides [E : K] = [S3 : A3] = 2 and
√

discF 6∈ K by assumption, so E = K(
√

discF ). We thus get

K(α1, α2, α3)
2

2
2

3K(α3)

3

K(α2)

3

K(α1)

3 K(
√

discF )

2

K

In particular, the stem fields K(α1), K(α2), K(α3), which are all isomorphic (to K[x]/F (x),

that’s a theorem) but distinct, are smaller than the splitting field K(α1, α2, α3) in this case.

Suppose now that F is irreducible and discF is a square in K. Then GalK(F ) = A3

since it is transitive and contained in A3. Since A3 ' Z/3Z has prime order, it cannot have

any nontrivial subgroup, so by the Galois correspondence the only intermediate fields are

K(α1, α2, α3)

#A3=3

K.

Since F is irreducible over K, it has no root in K, so α1 6∈ K, so K(α1) ) K, so

K(α1) = K(α1, α2, α3).

We can also see this by noting that the corresponding subgroup is the stabiliser of 1 in A3,

which is reduced to {Id}. Similarly

K(α2) = K(α3) = K(α1, α2, α3).

So this time, the stem fields K(α1), K(α2), K(α3) are all the same (not only up to isomor-

phism), and agree with the splitting field K(α1, α2, α3).

Suppose now that F factors as 1 + 2 over K, and let α1 be the root of F in K. Then

F (x) = (x − α1)G(x), where G(x) = (x − α2)(x − α3) is irreducible over K. In particular
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GalK(F ) = Id×GalK(G) = Id×S2. Again this does not have any nontrivial subgroups, so

the only intermediate fields are

K(α1, α2, α3)

2

K.

We have K(α1) = K, but K(α2) = K(α3) = K(α1, α2, α3).

Finally, if F factors completely over K, then all the αi are in K, so the only intermediate

field is

K = K(α1, α2, α3)

which is of course also K(αi) for any i. This checks out with Galois theory, since in this case

GalK(F ) = {Id} has only one subgroup (including itself and{Id}, which is the same thing in

this case).

In the last two cases, there is no stem field anymore since F is not irreducible (that was

the catch).

Question 3 Galois group computations

Determine the Galois group over Q of the polynomials below, and say if they are solvable by

radicals over Q.

1. x3 − x2 − x− 2,

2. x3 − 3x− 1,

3. x3 − 7,

4. x5 + 21x2 + 35x+ 420,

5. x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.
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Solution 3

1. Looking for rational roots, we find the factorisation f = (x − 2)(x2 + x + 1). The

second factor has ∆ = −3 < 0 so is irreducible over R and hence over Q. As a result,

the polynomial is separable and has Galois group {Id} × S2. This is Abelian, hence

solvable, so this polynomial is solvable by radicals.

2. No rational roots, so irreducible (since degree 3). disc = 81 = 92 so A3. This group is

Abelian, hence solvable, so this polynomial is solvable by radicals.

3. No rational roots, so irreducible (since degree 3). disc = −33 · 72 is clearly not a square

in Q, so S3. This group is solvable because Id /A3 / S3 has Abelian factors, so this

polynomial is solvable by radicals.

Note: since S3 is solvable, any subgroup is also solvable, so any equation of degree 3 is

solvable by radicals.

4. Eisenstein at 7 so irreducible, so transitive Galois group. Mod 2, factors as

x5 + x2 + x = x(x4 + x+ 1).

The second factor is irreducible: if not, it would have a factor of degree 1 or 2, but

gcd(x4+x+1, x2
2−1) = gcd(x4+x+1, x4−1−(x4+x+1)) = gcd(x4+x+1, x) = 1

so it has no irreducible factor of degree dividing 2. So we have a 4-cycle.

Mod 3, factors as

x5 − x = (x− 1)x(x+ 1)(x2 + 1)

with x2 + 1 irreducible mod 3 (degree ≤ 3, no roots), so we have a 2-cycle. Conclusion

: S5. We know that this is not a solvable group, so this polynomial is not solvable by

radicals.

5. This is the cyclotomic polynomial Φ11(x), so Galois group (Z/11Z)×. This is Abelian,

hence solvable, so this polynomial is solvable by radicals even though it hs degree ≥ 5

(indeed, the roots are 11
√

1...)

Page 6 of 10

c© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2019



MAU34101-1

Question 4 A cosine formula (35 pts)

Let c = cos(2π/17).

1. Prove that c is algebraic over Q.

2. Determine the conjugates of c over Q, and its degree as an algebraic number over Q.

3. Explain how one could in principle use Galois theory (and a calculator / computer) to

find an explicit formula for c.

Solution 4

1. Let ζ = exp(2πi/17), a primitive 17-th root of 1. Since ζ is clearly algebraic over Q

(as a root of x17 − 1 / even better: of Φ17(x)), Q(ζ) is a finite extension of Q. As a

result, it is an algebraic extension of Q, which means that all its elements are algebraic

over Q. This applies in particular to c = ζ+ζ−1

2
.

2. Let ζ as above, and L = Q(ζ). We know that L is Galois over Q; since c ∈ L, this

implies that the conjugates of c are the σ(c) for σ ∈ Gal(L/Q). It remains to determine

them explicitly.

First, we know that Gal(L/Q) ' (Z/17Z)×. Second, this group is cyclic (of order 16

of course) because 17 is prime. Let us look for a generator. 2 does not work because

24 = 16 ≡ −1 mod 17, so 28 = 1, so 2 has order 8 < 16. However 3 is a generator

since

32 = 9, 34 = 92 = 81 ≡ −4, 38 ≡ (−4)2 ≡ −1.

As a result, (Z/17Z)∗ ' Z/16Z = 〈3〉, so Gal(L/Q) is generated by σ3 : ζ 7→ ζ3.

In particular, the conjugates of c are its orbit under σ3. Using c = ζ+ζ−1

2
(and some

patience), we compute that

σ3(c) =
ζ3 + ζ−3

2
= cos(6π/17),

σ2
3(c) =

ζ9 + ζ−9

2
= cos(18π/17) =

ζ−8 + ζ8

2
= cos(19π/17),
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σ3
3(c) =

ζ27 + ζ−27

2
=
ζ−7 + ζ7

2
= cos(14π/17),

σ4
3(c) =

ζ−21 + ζ21

2
=
ζ−4 + ζ4

2
= cos(8π/17),

σ5
3(c) =

ζ−12 + ζ12

2
=
ζ5 + ζ−5

2
= cos(10π/17),

σ6
3(c) =

ζ15 + ζ−15

2
=
ζ−2 + ζ2

2
= cos(4π/17),

σ7
3(c) =

ζ−6 + ζ6

2
= cos(12π/17),

σ8
3(c) =

ζ−18 + ζ18

2
=
ζ + ζ−1

2
= cos(2π/17) = c,

so we stop here (note that since 38 ≡ −1, we already knew that σ8
3 would fix c, so the

orbit would have length 6 8): the conjugates of c are

c = cos(2π/17), cos(6π/17), cos(18π/17), cos(14π/17),

cos(8π/17), cos(10π/17), cos(4π/17), cos(12π/17).

Using a calculator, one checks that they are all distinct. Since they are the roots of the

minimal polynomial of c, we see that the degree of c as an algebraic number is 8.

3. Since Gal(L/Q) is cyclic of order 16, it has precisely one subgroup of the each of

the following orders: 1, 2, 4, 8, 16 (and these all all its subgroups). The Galois

correspondence show that there is a succession of extensions of degree 2 starting at Q

an culminating at L. This are all the subfields of L (since these were all the subgroups).

The field Q(c) must be one of them; since this field has degree 8 over Q by the above,

it is actually the second-to-top one (the top one being L).

Starting with Q, we can now find an explicit generator by expressing a generator in

terms of ζ, finding its other conjugate over the subfield just below it by using the Galois

action (there will be only one other conjugate since each extension step is of degree 2),

deducing its minimal polynomial over that subfield, and solving it (which we can since

it will have degree 2).

For instance, for the first step, we see that α =
∑7

k=0 σ
2k
3 (ζ) lies in the extension of

degree 2 over Q since it is fixed by σ2
3 (which generates the corresponding subgroup of
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order 8), and has α′ = σ3(α) =
∑7

k=0 σ
2k+1
3 (ζ) as a conjugate. Sine one checks with a

calculator that α′ 6= α, we have that α generates the extension of degree 2 (and so does

α′), and satisfies its minimal polynomial A(x) = (x − α)(x − α′) ∈ Q[x]. Expressing

it in terms of ζ (which is really painful without a computer) yields A(x) = x2 + x− 4,

which shows that α, α′ = −1±
√
17

2
, so this extension is actually Q(

√
17).

Next, we find similarly that β =
∑3

k=0 σ
4k
3 (ζ) lies in the extension of degree 4, and

generates it since it is distinct from its conjugate β′ = σ3(β) over Q(α); and since it is

a root of B(x) = (x− β)(x− β′) which must lie in Q(α)[x], we can express it in terms

of α.

With a lot of courage (or in my case, a good computer program), we find that B(x) =

x2 − α + 1 whence β, β′ = α±
√
α2−4
2

. Continuing this way, we finally arrive to the

fantastically horrible formula

cos
2π

17
=
−1 +

√
17 +

√
2
√

17−
√

17 + 2

√
17 + 3

√
17−

√
170 + 38

√
17

16
.

Question 5 Extensions of finite field are Galois (35 pts)

Let p ∈ N be prime, n ∈ N, and q = pn.

1. Give two proofs of the fact that the extension Fp ⊂ Fq is Galois: one by viewing Fq as

a splitting field, and the other by considering the order of Frob ∈ Aut(Fq).

2. What does the Galois correspondence tell us for Fp ⊂ Fq?

3. Generalise to an arbitrary extension of finite fields Fq ⊂ Fq′ .

Solution 5

1. Recall that

Fq = {x ∈ Fp | xq = x}.
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In particular, Fq is the splitting field over Fp of F (x) = xq − x, so it is normal over Fp;

besides, F ′ = −1 has no common factor with F , so F is separable, so Fq is separable

over Fp (we may also argue that Fp, being finite, is perfect).

Second proof: Frob : x 7→ xp ∈ AutFp(Fq). Its iterates are Frobk : x 7→ xp
k
, so if Frob

has order o, then every element of Fq is a root of xp
o−x, whence po > q by considering

the degree, i.e. o > n. SO Frob has at least n distinct iterates in AutFp(Fq), so the

inequality

# AutFp(Fq) ≤ [Fq : Fp] = n

is an equality, so the extension is Galois (cf. question 1). Besides, this proof also show

that the Galois group is cyclic and generated by Frob.

2. The subgroups of

Gal(Fq/Fp) = 〈Frob〉 ' Z/nZ

are the

〈Frobd〉 ' dZ/nZ

for d | n since the former is cyclic by the above. For each d, the corresponding subfield

is

F〈Frobd〉q = {x ∈ Fq | xp
d

= x} = Fpd

as predicted by the classification of finite fields.

3. By the same arguments as the above, this extension is Galois, with cyclic Galois group

generated by Frobq : x 7→ xq (since it must induce the identity on Fq). The Galois

correspondence then shows that the intermediate fields are the Fqd for d | m, where

q′ = qm, as predicted by the classification of finite fields.
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