Math 345 — Algebraic number theory Exercise sheet 4: The class group

https://staff.aub.edu.lb/~nm116/teaching/2018/math345/index.html Nicolas Mascot (nm116@aub.edu.lb)

Version: April 19, 2018

Answers must be submitted by Friday April 27, 12:00.

Exercise 4.1: Class group computations (40 pts)

Determine the class group of the following number fields:

- 1. (20 points) $\mathbb{Q}(\sqrt{-29})$,
- 2. (20 points) $\mathbb{Q}(\sqrt{-33})$.

Exercise 4.2: Arbitrarily large class numbers (10 points)

Let d > 0 be a squarefree integer, and let $K = \mathbb{Q}(\sqrt{-d})$. Suppose that $p \in \mathbb{N}$ is a prime which splits in K, and let \mathfrak{p} be a prime ideal above p.

1. (5 points) Prove that for all integers $i \ge 1$ such that $p^i < |\operatorname{disc} K|/4$, the ideal \mathfrak{p}^i is not principal.

Hint: consider the cases $d \not\equiv 1 \pmod{4}$ *and* $d \equiv 1 \pmod{4}$ *separately.*

- 2. (2 points) What does this tell you about the class number of K?
- 3. (3 points) Using without proof the fact that there exists infinitely many squarefree positive numbers of the form 8k + 7 for $k \in \mathbb{N}$, prove that for every X > 0there exists a number field K such that $h_K > X$.

Exercise 4.3: A norm equation (20 points)

Let $n \ge 0$ be an integer. The goal of this exercise is to determine the number of solutions to the Diophantine equation

$$x^{2} + 10y^{2} = 7^{n} \qquad (x, y \in \mathbb{Z})$$
(1)

in terms of n.

We let $K = \mathbb{Q}(\alpha)$ where $\alpha = \sqrt{-10}$, and note that (1) can be rewritten as

$$N_{\mathbb{O}}^{K}(x + \alpha y) = 7^{n}$$

You may freely use the fact that $\mathbb{Z}_K^{\times} = \{\pm 1\}.$

- 1. (5 points) Determine \mathbb{Z}_K and $\operatorname{Cl}(K)$.
- 2. (4 points) Determine the decomposition of 7 in \mathbb{Z}_K , and the image in $\operatorname{Cl}(K)$ of the primes appearing in this factorisation.
- 3. (5 points) Let \mathfrak{a} be an of \mathbb{Z}_K of norm 7^n . What does the factorisation into primes of \mathfrak{a} look like? What does this tell you about the image of \mathfrak{a} in $\mathrm{Cl}(K)$?
- 4. (6 points) Express the number of solutions to (1) in terms of n.

Exercise 4.4: A Mordell-Weil equation (30 points)

The goal of this exercise is to solve the Diophantine equation

$$y^2 = x^3 - 148$$
 $(x, y \in \mathbb{Z})$ (2)

We let $K = \mathbb{Q}(\alpha)$ where $\alpha = \sqrt{-37}$, and note that (2) can be rewritten as

$$(y+2\alpha)(y-2\alpha) = x^3.$$

You may freely use the following facts:

- 37 is prime,
- $\mathbb{Z}_K^{\times} = \{\pm 1\}.$
- 1. (1 point) Prove that the equation has no solution such that $37 \mid y$.
- 2. (8 points) Determine \mathbb{Z}_K and $\operatorname{Cl}(K)$, as well as the decomposition of 37 in K.
- 3. (4 points) Let (x, y) be a hypothetical solution of (2). Prove that there is at most one prime \mathfrak{p} of K that divides both $(y + 2\alpha)$ and $(y 2\alpha)$.
- 4. (12 points) Deduce that at least one of $y + 2\alpha$ or $y 2\alpha$ is a cube or twice a cube in \mathbb{Z}_K .

Hint: Prove that $(y+2\alpha) = \mathfrak{b}^3\mathfrak{p}_2^r$ and $(y-2\alpha) = \mathfrak{b}'^3\mathfrak{p}_2^{r'}$ for some ideals $\mathfrak{b}, \mathfrak{b}' \subset \mathbb{Z}_K$ and integers $r, r' \ge 0$. How small can you make r and r'?

5. (4 points) Find all the solutions of (2).