Math 261 - Final exam

December 13, 2017
The use of calculators, notes, and books is NOT allowed.

Exercise 1: Since today is the 13th... (10 pts)

Factor $1+3 i$ into irreducibles in $\mathbb{Z}[i]$.
Make sure to justify that your factorization is complete.

Solution 1:

Let $\alpha=1+3 i$. We have $N(\alpha)=1^{2}+3^{2}=10=2 \times 5$ so α must be of the form $\pi_{2} \pi_{5}$ where π_{2} (resp. π_{5}) is an irreducible of norm 2 (resp. 5).

As π_{2} must be associate to $1+i$, after taking a unit out of π_{2} and putting it in π_{5}, we can assume that $\pi_{2}=1+i$, so that

$$
\pi_{5}=\alpha /(1+i)=\frac{1+3 i}{1+i}=\frac{(1+3 i)(1-i)}{2}=2+i
$$

Thus $\alpha=(1+i)(2+i)$ is the complete factorization of α.

Exercise 2: Primes of the form $x^{2}+4 y^{2}$ (28 pts)

Let $p \in \mathbb{N}$ be a prime. The goal of this exercise is to give two proofs of the following statement:
p is of the form $x^{2}+4 y^{2}$ with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1(\bmod 4) .(\star)$
Suggestion: In some of the questions below, you may find it easier to treat the cases $p \neq 2$ and $p=2$ separately.

1. (10 pts) Find all primitive reduced quadratic forms of discriminant -16 .
2. (10 pts) Deduce a proof of (\star) using the theory of quadratic forms.
3. (8 pts) Use the theorem on the sum of 2 squares to find another proof of (\star). Hint: $4 y^{2}=(2 y)^{2}$.

Solution 2:

1. Let (a, b, c) be a reduced form of discriminant -16 . The we know that b must be even, and that $a \leqslant \sqrt{16 / 3}<\sqrt{6}<3$, so $a=1$ or 2 . Finally, $c=\frac{16+b^{2}}{4 a}$.
For $a=1$, we can only take $b=0$ since $|b| \leqslant a$. This yields $c=4$, so we record the form $x^{2}+4 y^{2}$.
For $a=2$ we can have $b=0$ or $b=2$, but not $b=-2$ (since then we'd have $|b|=a$ so b would have to be positive). For $b=0$, we find $c=2$, whence the form $2 x^{2}+2 y^{2}$, but this form is not primitive so we throw it away. For $b=2$, we find $c=5 / 2$ which is not an integer.
In conclusion, there is only one reduced primitive form of discriminant -16 , namely $x^{2}+4 y^{2}$.
2. By the previous question, every primitive form of discriminant -16 is equivalent to $x^{2}+4 y^{2}$. Thus if $p \nmid 2 \times 16$ is a prime, then p is of the form $x^{2}=4 y^{2}$ iff. $\left(\frac{-16}{p}\right)=1$.
The condition $p \nmid 2 \times 16$ is of course equivalent to $p \neq 2$; besides, for such p we have
$\left(\frac{-16}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{16}{p}\right)=\left(\frac{-1}{p}\right)=(-1)^{p^{\prime}}=\left\{\begin{array}{clll}+1 & \text { if } & p \equiv 1 \quad(\bmod 4) \\ 3 & \text { if } & p \equiv-1 & (\bmod 4)\end{array}\right.$
Besides, $p=2$ is obviously not of the form $x^{2}+4 y^{2}$, whence (\star).
3. Suppose first that $p=2$. Then $p \not \equiv 1(\bmod 4)$ and p is clearly not fo the form $x^{2}+4 y^{2}$, so (\star) holds.
Suppose now that $p \neq 2$. The p is odd, so $p \equiv 1$ or $3(\bmod 4)$. Besides, since p is prime, it is a sum of 2 squares iff. $p \not \equiv 3(\bmod 4)$. So if $p \equiv 3$ $(\bmod 4)$, then p is not the sum of 2 squares; a fortiori it is not of the form $x^{2}+4 y^{2}=x^{2}+(2 y)^{2}$. Conversely, if $p \equiv 1(\bmod 4)$, then $p=a^{2}+b^{2}$ is a sum of 2 squares; then as p is odd, a and b cannot have the same parity, so without loss of generality we may assume a odd and b even. If we write $b=2 y$, then we see that $p=a^{2}+(2 y)^{2}=x^{2}+4 y^{2}$ with $x=a$. So we have proved that (\star) also holds when $p \neq 2$.

Exercise 3: A Pell-Fermat equation (18 pts)

1. $(10 \mathrm{pts})$ Compute the continued fraction of $\sqrt{37}$.

This means you should somehow find a formula for all the coefficients of the continued fraction expansion, not just finitely many of them.
2. (8 pts) Use the previous question to find the fundamental solution to the equation $x^{2}-37 y^{2}=1$.

Solution 3:

1. Let $x=\sqrt{37}$. Since x is a quadratic number, its continued fraction expansion is ultimately periodic. Let us make this fact explicit.
We set $x_{0}=x, a_{0}=\left\lfloor x_{0}\right\rfloor=6$.
Then $x_{1}=\frac{1}{x_{0}-a_{0}}=\frac{1}{\sqrt{37}-6}=6+\sqrt{37}$, so $a_{1}=\left\lfloor x_{1}\right\rfloor=12$.
Then $x_{2}=\frac{1}{x_{1}-a_{1}}=\frac{1}{6+\sqrt{37}-12}=\frac{1}{\sqrt{37}-6}=x_{1}$, so we see by induction that $x_{n+1}=x_{n}$ and $a_{n+1}=a_{n}$ for all $n \geqslant 1$.
Thus $\sqrt{37}=[6, \overline{12}]=[6,12,12,12, \cdots]$.
2. The first convergent of the continued fraction computed above is $p_{0} / q_{0}=6 / 1$. Trying $x=6, y=1$, we find that $6^{2}-37 \times 1^{2}=-1$.
So in order to find the fundamental solution, all we have to do is square the number $6+1 \times \sqrt{37}$. We find that

$$
(6+\sqrt{37})^{2}=36+12 \sqrt{37}+37=73+12 \sqrt{37}
$$

so the fundamental solution is $x=73, y=12$.

Exercise 4: Carmichael numbers (44 pts)

1. (8 pts) State Fermat's little theorem, and explain why it implies that if $p \in \mathbb{N}$ is prime, then $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}$.

A Carmichael number is an integer $n \geqslant 2$ which is not prime, but nonetheless satisfies $a^{n} \equiv a(\bmod n)$ for all $a \in \mathbb{Z}$. Note that this can also be written $n \mid\left(a^{n}-a\right)$ for all $a \in \mathbb{Z}$.
2. (6 pts) Let $n \geqslant 2$ be a Carmichael number, and let $p \in \mathbb{N}$ be a prime dividing n. Prove that $p^{2} \nmid n$.
Hint: Apply the definition of a Carmichael number to a particular value of a.
3. Let $n \geqslant 2$ be a Carmichael number. According to the previous question, we may write

$$
n=p_{1} p_{2} \cdots p_{r}
$$

where the p_{i} are distinct primes. Let p be one the the p_{i}.
(a) $(6 \mathrm{pts})$ Recall the definition of a primitive root $\bmod p$.
(b) (9 pts) Prove that $(p-1) \mid(n-1)$.

Hint: Consider an $a \in \mathbb{Z}$ which is a primitive root $\bmod p$.
4. (9 pts) Conversely, prove that if an integer $m \in \mathbb{N}$ is of the form

$$
m=p_{1} p_{2} \cdots p_{r}
$$

where the p_{i} are distinct primes such that $\left(p_{i}-1\right) \mid(m-1)$ for all $i=1,2, \cdots, r$, then m is a Carmichael number.
Hint: Prove that $p_{i} \mid\left(a^{m}-a\right)$ for all $i=1, \cdots, r$ and all $a \in \mathbb{Z}$.
5. (6 pts) Let $n \geqslant 2$ be a Carmichael number. The goal of this question is to prove that n must have at least 3 distinct prime factors. Note that according to question 2 ., n cannot have only 1 prime factor.
Suppose that n has exactly 2 prime factors, so that we may write

$$
n=(x+1)(y+1)
$$

where $x, y \in \mathbb{N}$ are distinct integers such that $x+1$ and $y+1$ are both prime. Use question 3.(b) to prove that $x \mid y$, and show that this leads to a contradiction.

Solution 4:

1. Fermat's little theorem states that for all $n \in \mathbb{N}$ and for all $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, we have $a^{\phi(n)}=1$. In other words, for all $a \in \mathbb{Z}$ coprime to n, we have $a^{\phi(n)} \equiv 1$ $(\bmod n)$.
In particular, if $n=p$ is prime, then $\phi(n)=p-1$, so that for all $a \in \mathbb{Z}$ not divisible by p we have $a^{p-1} \equiv 1(\bmod p)$.
Multiplying both sides by a, we get that $a^{p} \equiv a(\bmod p)$ for all a not divisible by p. This still holds even if $p \mid a$ since a and a^{p} are both $\equiv 0(\bmod p)$ in this case.
2. Let us take $a=p$; since n is a Carmichael number, we have $n \mid\left(p^{n}-p\right)$. Now if $p^{2} \mid n$, we deduce that $p^{2} \mid\left(p^{n}-p\right)$, whence $p^{2} \mid p$ since $p \mid p^{n}$ as $n \geqslant 2$, which is obviously a contradiction.
3. (a) A primitive root $\bmod p$ is an element $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$of multiplicative order $p-1$; in other words, such that $x^{m} \neq 1$ for all $1 \leqslant m<p-1$.
(b) Let $a \in \mathbb{N}$ be such that $(a \bmod p)$ is a primitive root $\bmod p$. Since n is a Carmichael number, we have $n \mid\left(a^{n}-a\right)$, whence $p \mid\left(a^{n}-a\right)$ as $p \mid a$. Thus $a^{n} \equiv a(\bmod p)$. But $a \not \equiv 0(\bmod p)$ since a is a primitive root $\bmod p$, so since p is prime, a is invertible $\bmod p$, so we can simplify by a and get

$$
a^{n-1} \equiv 1 \quad(\bmod p)
$$

This says that $n-1$ is a multiple of the multiplicative order of $(a \bmod p)$, which is $p-1$ since $(a \bmod p)$ is a primitive root. Thus $(p-1) \mid(n-1)$.
4. Let p be one of p_{1}, \cdots, p_{r}. By assumption, we have $m-1=(p-1) q$ for some $q \in \mathbb{N}$.

Let now $a \in \mathbb{Z}$. We have

$$
a^{m}-a=a\left(a^{m-1}-1\right)=a\left(\left(a^{p-1}\right)^{q}-1\right)
$$

so if $a \equiv 0(\bmod p)$ then $a^{m}-a \equiv 0(\bmod p)$, whereas if $a \not \equiv 0(\bmod p)$, then $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, so by Fermat's little theorem we have $a^{p-1} \equiv 1(\bmod p)$ whence $\left(a^{p-1}\right)^{q}-1 \equiv 1^{q}-1=0(\bmod p)$; so either way $a^{m} \equiv a(\bmod p)$, i.e. $p \mid\left(a^{m}-a\right)$.
This holds for any $p \in\left\{p_{1}, \cdots, p_{r}\right\}$, and the p_{i} are coprime since they are distinct primes, so

$$
m=p_{1} \cdots p_{r} \mid\left(a^{m}-a\right)
$$

Since this holds for all a, this means that m is a Carmichael number.
5. By question 3.(b), $x=(x+1)-1$ divides $n-1=(x+1)(y+1)=x y+x+y$, so x divides $x y+x+y-x(y+1)=y$. Similarly, we see that $y \mid x$, so that $x=y$, which contradicts the assumption that x and y are distinct.

Note: The smallest Carmichael number is $561=3 \times 11 \times 17$. There are infinitely many Carmichael numbers; more precisely, it was proved in 1992 that for large enough X, there are at least $X^{2 / 7}$ Carmichael numbers between 1 and X. The existence of Carmichael numbers means that a simple-minded primality test based on Fermat's last theorem would not be rigorous.

END

