
Math 261 — Final exam
December 13, 2017

The use of calculators, notes, and books is NOT allowed.

Exercise 1: Since today is the 13th... (10 pts)
Factor 1 + 3i into irreducibles in Z[i].

Make sure to justify that your factorization is complete.

Solution 1:
Let α = 1 + 3i. We have N(α) = 12 + 32 = 10 = 2 × 5 so α must be of the form
π2π5 where π2 (resp. π5) is an irreducible of norm 2 (resp. 5).

As π2 must be associate to 1 + i, after taking a unit out of π2 and putting it in
π5, we can assume that π2 = 1 + i, so that

π5 = α/(1 + i) =
1 + 3i

1 + i
=

(1 + 3i)(1− i)
2

= 2 + i.

Thus α = (1 + i)(2 + i) is the complete factorization of α.

Exercise 2: Primes of the form x2 + 4y2 (28 pts)
Let p ∈ N be a prime. The goal of this exercise is to give two proofs of the following
statement:

p is of the form x2 + 4y2 with x, y ∈ Z if and only if p ≡ 1 (mod 4). (?)

Suggestion: In some of the questions below, you may find it easier to treat the
cases p 6= 2 and p = 2 separately.

1. (10 pts) Find all primitive reduced quadratic forms of discriminant −16.

2. (10 pts) Deduce a proof of (?) using the theory of quadratic forms.

3. (8 pts) Use the theorem on the sum of 2 squares to find another proof of (?).

Hint: 4y2 = (2y)2.

Solution 2:
1. Let (a, b, c) be a reduced form of discriminant −16. The we know that b must

be even, and that a 6
√

16/3 <
√

6 < 3, so a = 1 or 2. Finally, c = 16+b2

4a
.

For a = 1, we can only take b = 0 since |b| 6 a. This yields c = 4, so we record
the form x2 + 4y2.

For a = 2 we can have b = 0 or b = 2, but not b = −2 (since then we’d have
|b| = a so b would have to be positive). For b = 0, we find c = 2, whence the
form 2x2 + 2y2, but this form is not primitive so we throw it away. For b = 2,
we find c = 5/2 which is not an integer.

In conclusion, there is only one reduced primitive form of discriminant −16,
namely x2 + 4y2.

1



2. By the previous question, every primitive form of discriminant −16 is equiva-
lent to x2 + 4y2. Thus if p - 2× 16 is a prime, then p is of the form x2 = 4y2

iff.
(
−16
p

)
= 1.

The condition p - 2 × 16 is of course equivalent to p 6= 2; besides, for such p
we have(
−16

p

)
=

(
−1

p

)(
16

p

)
=

(
−1

p

)
= (−1)p

′
=

{
+1 if p ≡ 1 (mod 4)
3 if p ≡ −1 (mod 4)

Besides, p = 2 is obviously not of the form x2 + 4y2, whence (?).

3. Suppose first that p = 2. Then p 6≡ 1 (mod 4) and p is clearly not fo the form
x2 + 4y2, so (?) holds.

Suppose now that p 6= 2. The p is odd, sop ≡ 1 or 3 (mod 4). Besides,
since p is prime, it is a sum of 2 squares iff. p 6≡ 3 (mod 4). So if p ≡ 3
(mod 4), then p is not the sum of 2 squares; a fortiori it is not of the form
x2 + 4y2 = x2 + (2y)2. Conversely, if p ≡ 1 (mod 4), then p = a2 + b2 is a sum
of 2 squares; then as p is odd, a and b cannot have the same parity, so without
loss of generality we may assume a odd and b even. If we write b = 2y, then
we see that p = a2 + (2y)2 = x2 + 4y2 with x = a. So we have proved that (?)
also holds when p 6= 2.

Exercise 3: A Pell-Fermat equation (18 pts)
1. (10 pts) Compute the continued fraction of

√
37.

This means you should somehow find a formula for all the coefficients of the
continued fraction expansion, not just finitely many of them.

2. (8 pts) Use the previous question to find the fundamental solution to the
equation x2 − 37y2 = 1.

Solution 3:
1. Let x =

√
37. Since x is a quadratic number, its continued fraction expansion

is ultimately periodic. Let us make this fact explicit.

We set x0 = x, a0 = bx0c = 6.

Then x1 = 1
x0−a0 = 1√

37−6 = 6 +
√

37, so a1 = bx1c = 12.

Then x2 = 1
x1−a1 = 1

6+
√
37−12 = 1√

37−6 = x1, so we see by induction that
xn+1 = xn and an+1 = an for all n > 1.

Thus
√

37 = [6, 12] = [6, 12, 12, 12, · · · ].

2. The first convergent of the continued fraction computed above is p0/q0 = 6/1.
Trying x = 6, y = 1, we find that 62 − 37× 12 = −1.

So in order to find the fundamental solution, all we have to do is square the
number 6 + 1×

√
37. We find that

(6 +
√

37)2 = 36 + 12
√

37 + 37 = 73 + 12
√

37,

so the fundamental solution is x = 73, y = 12.
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Exercise 4: Carmichael numbers (44 pts)
1. (8 pts) State Fermat’s little theorem, and explain why it implies that if p ∈ N

is prime, then ap ≡ a (mod p) for all a ∈ Z.

A Carmichael number is an integer n > 2 which is not prime, but nonetheless
satisfies an ≡ a (mod n) for all a ∈ Z. Note that this can also be written
n | (an − a) for all a ∈ Z.

2. (6 pts) Let n > 2 be a Carmichael number, and let p ∈ N be a prime dividing
n. Prove that p2 - n.

Hint: Apply the definition of a Carmichael number to a particular value of a.

3. Let n > 2 be a Carmichael number. According to the previous question, we
may write

n = p1p2 · · · pr
where the pi are distinct primes. Let p be one the the pi.

(a) (6 pts) Recall the definition of a primitive root mod p.

(b) (9 pts) Prove that (p− 1) | (n− 1).

Hint: Consider an a ∈ Z which is a primitive root mod p.

4. (9 pts) Conversely, prove that if an integer m ∈ N is of the form

m = p1p2 · · · pr

where the pi are distinct primes such that (pi−1) | (m−1) for all i = 1, 2, · · · , r,
then m is a Carmichael number.

Hint: Prove that pi | (am − a) for all i = 1, · · · , r and all a ∈ Z.

5. (6 pts) Let n > 2 be a Carmichael number. The goal of this question is to
prove that n must have at least 3 distinct prime factors. Note that according
to question 2., n cannot have only 1 prime factor.

Suppose that n has exactly 2 prime factors, so that we may write

n = (x+ 1)(y + 1)

where x, y ∈ N are distinct integers such that x + 1 and y + 1 are both
prime. Use question 3.(b) to prove that x | y, and show that this leads to a
contradiction.

Solution 4:
1. Fermat’s little theorem states that for all n ∈ N and for all a ∈ (Z/nZ)×, we

have aφ(n) = 1. In other words, for all a ∈ Z coprime to n, we have aφ(n) ≡ 1
(mod n).

In particular, if n = p is prime, then φ(n) = p − 1, so that for all a ∈ Z not
divisible by p we have ap−1 ≡ 1 (mod p).

Multiplying both sides by a, we get that ap ≡ a (mod p) for all a not divisible
by p. This still holds even if p | a since a and ap are both ≡ 0 (mod p) in this
case.
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2. Let us take a = p; since n is a Carmichael number, we have n | (pn − p). Now
if p2 | n, we deduce that p2 | (pn − p), whence p2 | p since p | pn as n > 2,
which is obviously a contradiction.

3. (a) A primitive root mod p is an element x ∈ (Z/pZ)× of multiplicative order
p− 1; in other words, such that xm 6= 1 for all 1 6 m < p− 1.

(b) Let a ∈ N be such that (a mod p) is a primitive root mod p. Since n is
a Carmichael number, we have n | (an − a), whence p | (an − a) as p | a.
Thus an ≡ a (mod p). But a 6≡ 0 (mod p) since a is a primitive root
mod p, so since p is prime, a is invertible mod p, so we can simplify by a
and get

an−1 ≡ 1 (mod p).

This says that n−1 is a multiple of the multiplicative order of (a mod p),
which is p− 1 since (a mod p) is a primitive root. Thus (p− 1) | (n− 1).

4. Let p be one of p1, · · · , pr. By assumption, we have m− 1 = (p− 1)q for some
q ∈ N.

Let now a ∈ Z. We have

am − a = a(am−1 − 1) = a((ap−1)q − 1),

so if a ≡ 0 (mod p) then am − a ≡ 0 (mod p), whereas if a 6≡ 0 (mod p),
then a ∈ (Z/pZ)×, so by Fermat’s little theorem we have ap−1 ≡ 1 (mod p)
whence (ap−1)q − 1 ≡ 1q − 1 = 0 (mod p); so either way am ≡ a (mod p), i.e.
p | (am − a).

This holds for any p ∈ {p1, · · · , pr}, and the pi are coprime since they are
distinct primes, so

m = p1 · · · pr | (am − a).

Since this holds for all a, this means that m is a Carmichael number.

5. By question 3.(b), x = (x+ 1)− 1 divides n− 1 = (x+ 1)(y+ 1) = xy+x+ y,
so x divides xy + x + y − x(y + 1) = y. Similarly, we see that y | x, so that
x = y, which contradicts the assumption that x and y are distinct.

Note: The smallest Carmichael number is 561 = 3×11×17. There are infinitely
many Carmichael numbers; more precisely, it was proved in 1992 that for large
enough X, there are at least X2/7 Carmichael numbers between 1 and X. The
existence of Carmichael numbers means that a simple-minded primality test based
on Fermat’s last theorem would not be rigorous.
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