Math 261 - Exam 2

November 4, 2017

The use of calculators, notes, and books is **NOT** allowed.

Exercise 1: Since today is November 4... (22 pts)

- (8 pts) Factor 114 into irreducibles in Z[i].
 Make sure to justify that your factorization is complete.
- 2. (6 pts) Is 114 a sum of 2 squares ? Of 3 squares ? Of 4 squares ?
- 3. (8 pts) Given that p = 1142017 is prime, find the number of elements of $\mathbb{Z}[i]$ of norm p.

Solution 1:

1. First of all, $114 = 2 \times 3 \times 19$. Now, we know that $2 = -i(1+i)^2$, and since 3 and 19 are primes $\equiv -1 \pmod{4}$, they are irreducible in $\mathbb{Z}[i]$. So the complete factorization is

$$114 = -i \times (1+i)^2 \times 3 \times 19.$$

- 2. Since there are primes (namely 3 and 19) that show up with odd multiplicity in 114, it is not a sum of 2 squares. However, 114 is not divisible by 4, so if it were of the form $4^{a}(8b+7)$ we would have a = 0 so 114 = 8b+7, which is not the case, so 114 is a sum of 3 squares. A fortiori it is also a sum of 4 squares.
- 3. We see that $p \equiv 1 \pmod{4}$, so p splits as $\pi \overline{\pi}$ in $\mathbb{Z}[i]$, with π and $\overline{\pi}$ non-associate irreducibles, both of norm p. So an element of $\mathbb{Z}[i]$ of norm p must factor as $u\pi$ or $u\overline{\pi}$, where u is a unit; since π and $\overline{\pi}$ are not associate, these elements are all distinct, and since there are 4 choices for u, we get 8 such elements.

Exercise 2: Legendre symbols (17 pts)

- 1. (5 pts) State the law of quadratic reciprocity.
- 2. (7 pts) Compute the Legendre symbol $\left(\frac{33}{79}\right)$.

You may use without proof the fact that 79 is prime.

3. (5 pts) Solve the equation $x^2 = x + 8$ in $\mathbb{Z}/79\mathbb{Z}$.

Solution 2:

1. Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right) = (-1)^{p'q'} \left(\frac{q}{p}\right),$$

where $p' = \frac{p-1}{2}$ and $q' = \frac{q-1}{2}$.

2.

$$\begin{pmatrix} \frac{33}{79} \end{pmatrix} = \begin{pmatrix} \frac{3}{79} \end{pmatrix} \begin{pmatrix} \frac{11}{79} \end{pmatrix} = -\begin{pmatrix} \frac{79}{3} \end{pmatrix} \times -\begin{pmatrix} \frac{79}{11} \end{pmatrix}$$
by quadratic reciprocity
$$= \begin{pmatrix} \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{2}{11} \end{pmatrix} = \begin{pmatrix} \frac{2}{11} \end{pmatrix} = -1$$

since $11 \equiv 3 \pmod{8}$.

3. The equation can be rewritten as $x^2 - x - 8 = 0$. Its discriminant is

$$\Delta = 1^2 - 4 \times -8 = 33,$$

and we have seen that $\left(\frac{33}{79}\right) = -1$, so the equation has no solutions in $\mathbb{Z}/79\mathbb{Z}$.

Exercise 3: A really big number (24 pts)

- 1. (6 pts) Prove that every integer $n \in \mathbb{N}$ is congruent to the sum of its digits mod 9.
- 2. (15 pts) Let $A = 4444^{444}$, let B be the sum of the digits of A, let C be the sum of the digits of B, and finally let D be the sum of the digits of C. Compute D mod 9.
- 3. (3 pts) Deduce that D = 7.

Solution 3:

1. Let n_0, n_1, n_2, \cdots be the digits of n from right to left, so that

$$n = n_0 + 10n_1 + 100n_2 + \dots = \sum n_i 10^i.$$

Since $10 \equiv 1 \pmod{9}$, we have

$$n = \sum n_i 10^i \equiv \sum n_i 1^i = \sum n_i \pmod{9}.$$

2. By the previous question, we have $D \equiv C \equiv B \equiv A \pmod{9}$, so we can just as well compute $A \mod 9$.

Now $4444 \equiv 16 \equiv -2 \pmod{9}$, so $A \equiv (-2)^{4444} \pmod{9}$. Now -2 and 9 are coprime, so by Fermat's little theorem we have $(-2)^{\phi(9)} \equiv 1 \pmod{9}$. We have $\phi(9) = 6$, so we can replace the exponent 4444 by anything congruent to it mod 6. Since $4444 \equiv 4 \pmod{6}$, we deduce that $A \equiv (-2)^4 = 16 \equiv 7 \pmod{9}$.

3. We are going to estimate roughly the size of D. First of all, we have

 $A < 10000^{5000} = 10^{20000},$

so A has at most 20000 digits, so

$$B \leq 9 \times 20000 = 180000.$$

So either B has 6 digits and the first one is a 1, or it has 5 digits or less; either way

$$C \leqslant 1 + 6 \times 9 = 55.$$

Therefore C has at most 2 digits and the first one is at most 5, so

$$D \leqslant 5 + 9 = 14.$$

Since we also know that $D \equiv 7 \pmod{9}$, we conclude that in fact D = 7.

Exercise 4: A primality test (37 pts)

Let $p \in \mathbb{N}$ be a prime such that $p \equiv 3 \pmod{4}$, and let P = 2p + 1. The goal of this exercise is to prove that P is prime if and only if $2^p \equiv 1 \mod P$.

- 1. In this question, we suppose that P is prime, and we prove that $2^p \equiv 1 \mod P$.
 - (a) (6 pts) Compute the Legendre symbol $\left(\frac{2}{P}\right)$.
 - (b) (5 pts) Deduce that $2^p \equiv 1 \pmod{P}$. Hint: What is $\frac{P-1}{2}$?
- 2. In this question, we suppose that $2^p \equiv 1 \mod P$, and we prove that P is prime.
 - (a) (6 pts) Prove that $2 \in (\mathbb{Z}/P\mathbb{Z})^{\times}$. What is its multiplicative order?
 - (b) (6 pts) Deduce that $p \mid \phi(P)$.
 - (c) (9 pts) Prove that p and P are coprime, and deduce that there exists a prime divisor q of P such that $q \equiv 1 \pmod{p}$. *Hint:* $\phi(\prod p_i^{a_i}) = \prod (p_i - 1) p_i^{a_i - 1}$.
 - (d) (5 pts) Deduce that P is prime.*Hint: How large can P/q be?*

Solution 4:

- 1. In this question, we suppose that P is prime, and we prove that $2^p \equiv 1 \mod P$.
 - (a) Since p = 4k + 3, we have $P = 2p + 1 = 8k + 7 \equiv -1 \pmod{8}$, so $\left(\frac{2}{P}\right) = 1$.
 - (b) We have $2^p = 2^{\frac{P-1}{2}} \equiv \left(\frac{2}{P}\right) = 1 \pmod{P}$.

- 2. (a) Since $2^p \equiv 1 \pmod{P}$, we see that 2 is invertible mod P, of inverse 2^{p-1} . Also, the same formula tells us that its multiplicative order mod P is a divisor of p. SInce p it prime, it is thus either 1 or p. But if it were 1, we would have $2^1 \equiv 1 \pmod{P}$, which is impossible since $P = 2p + 1 \ge 5$. So it must be p.
 - (b) Fermat's little theorem tells us that $p^{\phi(P)} \equiv 1 \pmod{P}$, so that $\phi(P)$ is a multiple of the multiplicative order of $p \mod P$. But this order is p by the previous question.
 - (c) Since P 2p = 1, p and P are coprime (Bézout). Let now $P = \prod p_i^{a_i}$ be the factorization of P. We have $\phi(P) = \prod (p_i 1)p_i^{a_i-1}$, and p divides this product by the previous question. Since p is prime, Euclid tells us that it must divide at least one of the factors. But p cannot divide any of the p_i since p and P are coprime, so p must divide at least one of the $(p_i 1)$. Letting $q = p_i$, we have thus found a prime q such that $q \mid P$ and $q \equiv 1 \pmod{p}$.
 - (d) Since $q \equiv 1 \pmod{p}$ and $q \neq 1$, we have $q \ge p+1$, so $P/q \le \frac{2p+1}{p+1} < 2$. But since $q \mid P, P/q$ is an integer, so we must have P/q = 1. Therefore, P = q is prime.

 \mathbf{END}