Math 261 - Exam 2

November 4, 2017
The use of calculators, notes, and books is NOT allowed.

Exercise 1: Since today is November 4... (22 pts)

1. (8 pts) Factor 114 into irreducibles in $\mathbb{Z}[i]$.

Make sure to justify that your factorization is complete.
2. (6 pts) Is 114 a sum of 2 squares ? Of 3 squares ? Of 4 squares ?
3. (8 pts) Given that $p=1142017$ is prime, find the number of elements of $\mathbb{Z}[i]$ of norm p.

Solution 1:

1. First of all, $114=2 \times 3 \times 19$. Now, we know that $2=-i(1+i)^{2}$, and since 3 and 19 are primes $\equiv-1(\bmod 4)$, they are irreducible in $\mathbb{Z}[i]$. So the complete factorization is

$$
114=-i \times(1+i)^{2} \times 3 \times 19 .
$$

2. Since there are primes (namely 3 and 19) that show up with odd multiplicity in 114 , it is not a sum of 2 squares. However, 114 is not divisible by 4 , so if it were of the form $4^{a}(8 b+7)$ we would have $a=0$ so $114=8 b+7$, which is not the case, so 114 is a sum of 3 squares. A fortiori it is also a sum of 4 squares.
3. We see that $p \equiv 1(\bmod 4)$, so p splits as $\pi \bar{\pi}$ in $\mathbb{Z}[i]$, with π and $\bar{\pi}$ non-associate irreducibles, both of norm p. So an element of $\mathbb{Z}[i]$ of norm p must factor as $u \pi$ or $u \bar{\pi}$, where u is a unit; since π and $\bar{\pi}$ are not associate, these elements are all distinct, and since there are 4 choices for u, we get 8 such elements.

Exercise 2: Legendre symbols (17 pts)

1. (5 pts) State the law of quadratic reciprocity.
2. (7 pts) Compute the Legendre symbol $\left(\frac{33}{79}\right)$.

You may use without proof the fact that 79 is prime.
3. (5 pts) Solve the equation $x^{2}=x+8$ in $\mathbb{Z} / 79 \mathbb{Z}$.

Solution 2:

1. Let p and q be distinct odd primes. Then

$$
\left(\frac{p}{q}\right)=(-1)^{p^{\prime} q^{\prime}}\left(\frac{q}{p}\right),
$$

where $p^{\prime}=\frac{p-1}{2}$ and $q^{\prime}=\frac{q-1}{2}$.
2.

$$
\begin{aligned}
\left(\frac{33}{79}\right)=\left(\frac{3}{79}\right)\left(\frac{11}{79}\right) & =-\left(\frac{79}{3}\right) \times-\left(\frac{79}{11}\right) \text { by quadratic reciprocity } \\
& =\left(\frac{1}{3}\right)\left(\frac{2}{11}\right)=\left(\frac{2}{11}\right)=-1
\end{aligned}
$$

since $11 \equiv 3(\bmod 8)$.
3. The equation can be rewritten as $x^{2}-x-8=0$. Its discriminant is

$$
\Delta=1^{2}-4 \times-8=33
$$

and we have seen that $\left(\frac{33}{79}\right)=-1$, so the equation has no solutions in $\mathbb{Z} / 79 \mathbb{Z}$.

Exercise 3: A really big number (24 pts)

1. (6 pts) Prove that every integer $n \in \mathbb{N}$ is congruent to the sum of its digits $\bmod 9$.
2. (15 pts) Let $A=4444^{4444}$, let B be the sum of the digits of A, let C be the sum of the digits of B, and finally let D be the sum of the digits of C. Compute $D \bmod 9$.
3. (3 pts) Deduce that $D=7$.

Solution 3:

1. Let $n_{0}, n_{1}, n_{2}, \cdots$ be the digits of n from right to left, so that

$$
n=n_{0}+10 n_{1}+100 n_{2}+\cdots=\sum n_{i} 10^{i}
$$

Since $10 \equiv 1(\bmod 9)$, we have

$$
n=\sum n_{i} 10^{i} \equiv \sum n_{i} 1^{i}=\sum n_{i}(\bmod 9)
$$

2. By the previous question, we have $D \equiv C \equiv B \equiv A(\bmod 9)$, so we can just as well compute $A \bmod 9$.
Now $4444 \equiv 16 \equiv-2(\bmod 9)$, so $A \equiv(-2)^{4444}(\bmod 9)$. Now -2 and 9 are coprime, so by Fermat's little theorem we have $(-2)^{\phi(9)} \equiv 1(\bmod 9)$. We have $\phi(9)=6$, so we can replace the exponent 4444 by anything congruent to it $\bmod 6$. Since $4444 \equiv 4(\bmod 6)$, we deduce that $A \equiv(-2)^{4}=16 \equiv 7$ $(\bmod 9)$.
3. We are going to estimate roughly the size of D. First of all, we have

$$
A<10000^{5000}=10^{20000}
$$

so A has at most 20000 digits, so

$$
B \leqslant 9 \times 20000=180000
$$

So either B has 6 digits and the first one is a 1 , or it has 5 digits or less; either way

$$
C \leqslant 1+6 \times 9=55 .
$$

Therefore C has at most 2 digits and the first one is at most 5 , so

$$
D \leqslant 5+9=14
$$

Since we also know that $D \equiv 7(\bmod 9)$, we conclude that in fact $D=7$.

Exercise 4: A primality test (37 pts)

Let $p \in \mathbb{N}$ be a prime such that $p \equiv 3(\bmod 4)$, and let $P=2 p+1$. The goal of this exercise is to prove that P is prime if and only if $2^{p} \equiv 1 \bmod P$.

1. In this question, we suppose that P is prime, and we prove that $2^{p} \equiv 1 \bmod P$.
(a) $(6 \mathrm{pts})$ Compute the Legendre symbol $\left(\frac{2}{P}\right)$.
(b) (5 pts) Deduce that $2^{p} \equiv 1(\bmod P)$.

Hint: What is $\frac{P-1}{2}$?
2. In this question, we suppose that $2^{p} \equiv 1 \bmod P$, and we prove that P is prime.
(a) (6 pts) Prove that $2 \in(\mathbb{Z} / P \mathbb{Z})^{\times}$. What is its multiplicative order?
(b) (6 pts) Deduce that $p \mid \phi(P)$.
(c) (9 pts) Prove that p and P are coprime, and deduce that there exists a prime divisor q of P such that $q \equiv 1(\bmod p)$.
Hint: $\phi\left(\prod p_{i}^{a_{i}}\right)=\Pi\left(p_{i}-1\right) p_{i}^{a_{i}-1}$.
(d) (5 pts) Deduce that P is prime.

Hint: How large can P / q be?

Solution 4:

1. In this question, we suppose that P is prime, and we prove that $2^{p} \equiv 1 \bmod P$.
(a) Since $p=4 k+3$, we have $P=2 p+1=8 k+7 \equiv-1(\bmod 8)$, so $\left(\frac{2}{P}\right)=1$.
(b) We have $2^{p}=2^{\frac{P-1}{2}} \equiv\left(\frac{2}{P}\right)=1(\bmod P)$.
2. (a) Since $2^{p} \equiv 1(\bmod P)$, we see that 2 is invertible $\bmod P$, of inverse 2^{p-1}. Also, the same formula tells us that its multiplicative order $\bmod P$ is a divisor of p. SInce p it prime, it is thus either 1 or p. But if it were 1 , we would have $2^{1} \equiv 1(\bmod P)$, which is impossible since $P=2 p+1 \geqslant 5$. So it must be p.
(b) Fermat's little theorem tells us that $p^{\phi(P)} \equiv 1(\bmod P)$, so that $\phi(P)$ is a multiple of the multiplicative order of $p \bmod P$. But this order is p by the previous question.
(c) Since $P-2 p=1, p$ and P are coprime (Bézout). Let now $P=\prod p_{i}^{a_{i}}$ be the factorization of P. We have $\phi(P)=\prod\left(p_{i}-1\right) p_{i}^{a_{i}-1}$, and p divides this product by the previous question. Since p is prime, Euclid tells us that it must divide at least one of the factors. But p cannot divide any of the p_{i} since p and P are coprime, so p must divide at least one of the ($p_{i}-1$). Letting $q=p_{i}$, we have thus found a prime q such that $q \mid P$ and $q \equiv 1(\bmod p)$.
(d) Since $q \equiv 1(\bmod p)$ and $q \neq 1$, we have $q \geqslant p+1$, so $P / q \leqslant \frac{2 p+1}{p+1}<2$. But since $q \mid P, P / q$ is an integer, so we must have $P / q=1$. Therefore, $P=q$ is prime.
