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Version: December 6, 2017

Answers are due for Monday 4 December, 11AM.

The use of calculators is allowed.

Exercise 8.1: Continued fraction expansions (30 pts)

1. (15 pts) Express the rational
261

101
as a continued fraction.

2. (15 pts) Compute the continued fraction expansion of the golden ratio

Φ =
1 +
√

5

2
, and the 4 first convergents.

Solution 8.1:
1. We apply the process seen in class. Since 261

101
∈ Q, it will stop after finitely

many steps, and we will get a representation of 261
101

as a continued fraction.

x0 =
261

101
, a0 = bx0c = 2,

x1 =
1

261
101
− 2

=
101

59
, a1 = bx1c = 1,

x2 =
1

101
59
− 1

=
59

42
, a2 = bx2c = 1,

x3 =
1

59
42
− 1

=
42

17
, a3 = bx3c = 2,

x4 =
1

42
17
− 2

=
17

8
, a4 = bx4c = 2,

x5 =
1

17
8
− 2

= 8, a5 = bx5c = 8.

Since x5 = a5 is an integer, we stop there. We have found that

261

101
= [2, 1, 1, 2, 2, 8] = 2 +

1

1 +
1

1 +
1

2 +
1

2 +
1

8

.
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2. We have x0 = Φ =
1 +
√

5

2
, so a0 = 1, and then

x1 =
1

x0 − a0
=

1
1+
√
5

2
− 1

=
2√

5− 1
=

2(
√

5 + 1)

4
=

√
5 + 1

2
= x0.

So we see that xn = x0 and that an = 1 for all n. Thus,

Φ = [1̄] = [1, 1, 1, · · · ] = 1 +
1

1 +
1

1 +
1

1 +
. . .

.

Since an = 1 for all n, both pn and qn satisfy the recurrence un = un−1 + un−2
(same recurrence as the Fibonacci sequence, but different initial conditions).

Let’s compute a few values:

n −1 0 1 2 3 · · ·
an • 1 1 1 1 · · ·
pn 1 1 2 3 5 · · ·
qn 0 1 1 2 3 · · ·

(so actually pn is the Fibonacci sequence, and qn is the Fibonacci sequence
shifted by 1).

The first 4 convergents are thus 1, 2, 3/2, and 5/3.

Exercise 8.2: A Pell-Fermat equation (40 pts)
1. (20 pts) Compute the continued fraction expansion of

√
6.

2. (10 pts) Use the previous question to find the fundamental solution to the
equation x2 − 6y2 = 1.

3. (10 pts) Use the ring structure of Z[
√

6] to find 2 other non-trivial solutions
(changing the signs of x and y does not count !)

Solution 8.2:
1. Let x =

√
6. The continued fraction expansion starts as follows:

x0 =
√

6, a0 = bx0c = 2, p0 = 2, q0 = 1,

x1 =
1√

6− 2
=

2 +
√

6

2
, a1 = bx1c = 2, p1 = 5, q1 = 2,

x2 =
1

2+
√
6

2
− 2

= 2 +
√

6, a2 = bx2c = 4, p2 = 22, q2 = 9,

x3 =
1

2 +
√

6− 4
=

2 +
√

6

2
, · · ·
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Since x3 = x1, the process becomes periodic from this point on. We deduce
that √

6 = [2, 2, 4].

2. We compute the first few values of pn and qn, until p2n − 6q2n = ±1.

n 0 1 · · ·
an 2 2 · · ·
pn 2 5 · · ·
qn 1 2 · · ·

p2n − 6q2n −2 1 · · ·

Luckily we don’t have to go very far ! We find the solution x = 5, y = 2.

3. We have thus found the element α = 5 + 2
√

6 ∈ Z[
√

6] of norm N(α) = 1.
Since the norm is multiplicative, all the powers of α also have norm 1, so
correspond to solutions of the equation x2 − 6y2 = 1.

We compute α2 = 49 + 20
√

6, whence the solution x = 49, y = 20.

Also, α3 = 485 + 198
√

6, whence the solution x = 485, y = 198.

Of course, we could go on if we wanted to !

Exercise 8.3: The battle of Hastings (30 pts)
The battle of Hastings was a major battle in English history. It took place on
October 14, 1066.

The following fictional historical text, taken from Amusement in Mathematics
(H. E. Dundeney, 1917), refers to it:

“The men of Harold stood well together, as their wont was, and formed thirteen
squares, with a like number of men in every square thereof. (. . . ) When Harold threw
himself into the fray the Saxons were one mighty square of men, shouting the battle
cries ‘Ut!’, ‘Olicrosse!’, ‘Godemite!’.”

Use continued fractions to determine how many soldiers this fictional historical
text suggests Harold II had at the battle of Hastings.

Solution 8.3:
We are looking for solutions to 13y2 + 1 = x2 with some x, y ∈ N. This translates
into the Pell-Fermat equation x2 − 13y2 = 1.

Clearly, the trivial solution x = 1, y = 0 does not reflect the situation (I doubt
Harold II would have gone to battle alone !), so let us compute the continued fraction
expansion of x =

√
13 until we find a non-trivial solution.
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x0 =
√

13, a0 = bx0c = 3, p0 = 3, q0 = 1, p20 − 13q20 = −4 6= ±1.

x1 =
1√

13− 3
=

3 +
√

13

4
, a1 = bx1c = 1, p1 = 4, q1 = 1, p21 − 13q21 = 3 6= ±1.

x2 =
1

3+
√
13

4
− 1

=
1 +
√

13

3
, a2 = bx2c = 1, p2 = 7, q2 = 2, p22 − 13q22 = −3 6= ±1.

x3 =
1

1+
√
13

3
− 1

=
2 +
√

13

3
, a3 = bx3c = 1, p3 = 11, q3 = 3, p23 − 13q23 = 4 6= ±1.

x4 =
1

2+
√
13

3
− 1

=
1 +
√

13

4
, a4 = bx4c = 1, p4 = 18, q4 = 5, p24 − 13q24 = −1.

We have found the element α = 18+5
√

13 of norm N(α) = −1. We deduce that
the fundamental solution to our equation corresponds to

α2 = 649 + 180
√

13,

that is to say x = 649, y = 180.
Since the other solutions are even larger, this suggests a number of soldiers on

this side of the battle (including Harold II) was at least 6492 = 421201. That’s
really a lot!
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The exercises below are not mandatory. They are not worth any
points, and are given here for you to practise. The solutions will be
made available with the solutions to the other exercises.

Exercise 8.4
Let x ∈ (0, 1) be irrational, and let [a0, a1, · · · , an] = pn/qn (n ∈ N) be the conver-
gents of the continued fraction expansion of x. Prove that

x =
+∞∑
n=0

(−1)n

qnqn+1

.

Hint: Where could the (−1)n come from ?

Solution 8.4
We know that qnpn−1 − pnqn−1 = (−1)n for all n. Therefore, we have

pn
qn
− pn−1
qn−1

=
(−1)n−1

qnqn−1

for all n. Now, obviously

pm
qm

=

(
pm
qm
− pm−1
qm−1

)
+

(
pm−1
qm−1

− pm−2
qm−2

)
+· · ·+

(
p1
q1
− p0
q0

)
p0
q0

=
p0
q0

+
m∑

n=1

(
pn
qn
− pn−1
qn−1

)
.

On the one hand, p0 = a0 = bxc = 0 since x ∈ (0, 1), so p0
q0

= 0. On the other hand,
we know that the sequence pn

qn
converges to x, so we get

x = lim
m→∞

pm
qm

= lim
m→∞

m∑
n=1

(
pn
qn
− pn−1
qn−1

)
=

+∞∑
n=1

(
pn
qn
− pn−1
qn−1

)
=

+∞∑
n=1

(−1)n−1

qnqn−1
=

+∞∑
n=0

(−1)n

qnqn+1

.

Exercise 8.5
Redo exercise 8.2, with 6 replaced by 14, 15, 17, and 18.

Solution 8.5
• For 14: We find

√
14 = [3, 1, 2, 1, 6]; the fundamental solution to x2 − 14y2 is

x = 15, y = 4.

• For 15: We find
√

15 = [3, 1, 6]; the fundamental solution to x2−15y2 is x = 4,
y = 1.

• For 17: We find
√

17 = [4, 8]; the fundamental solution to x2− 17y2 is x = 33,
y = 8.

• For 18: We find
√

18 = [4, 4, 8]; the fundamental solution to x2 − 18y2 is
x = 17, y = 4.
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