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Version: November 3, 2017

Answers are due for Wednesday 01 November, 11AM.

The use of calculators is allowed.

Exercise 6.1: How many squares? (10 pts)
1. Find an integer between 1000 and 2000 which is the sum of 3 squares, but not

of 2 squares.

2. Find an integer between 1000 and 2000 which is the sum of 4 squares, but not
of 3 squares.

Solution 6.1:
1. We know that if there is a prime p ≡ −1 (mod 4) such that p | n but p2 - n,

then n won’t be a sum of 2 squares. So let us take p = 3 for instance. We can
take n = 1005: since the sum of digits is 6, 3 | n but 9 - n, so n is not a sum
of 2 squares.

Besides, if we had n = 4a(8b + 7), then necessarily a = 0 since n is odd. But
n ≡ 5 6≡ 7 (mod 8), so n is not of the form 4a(8b+ 7). As a result, n is a sum
of 3 squares.

2. Since every integer is a sum of 4 squares, it suffices to take an n of the form
4a(8b+ 7) for any a and b. We can go the easy way and take a = 0, so we just
need n ≡ 7 (mod 8). So for instance n = 1007 works.

Exercise 6.2: Bézout in Z[i] (20 pts)
Compute gcd(α, β), and find ξ, η ∈ Z[i] such that αξ + βη = gcd(α, β), when

1. (10 pts) α = 4 + 6i, β = 5− 3i,

2. (10 pts) α = 8 + i, β = 5− 2i.
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Solution 6.2:
This is the same principle as in Z: we do euclidian divisions until we get a null
remainder, and then we go back up the relations we have found to get ξ and η.

1. Let us first perform a euclidian division of α by β. We have

α

β
=

(4 + 6i)(5 + 3i)

34
=

(2 + 3i)(5 + 3i)

17
=

1 = 21i

17
≈ i,

so the quotient is i and the remainder is (4 + 6i)− (5 + 3i)i = 1 + i. We record
this relation for later use.

Next, we divide the divisor by the remainder, that is to say 5 − 3i by 1 + i.
We have

5− 3i

1 + i
=

(5− 3i)(1− i)
2

= 1− i

exactly, so this time the remainder is 0. This means that gcd(α, β) = 1 + i .

Besides, we have
1 + i = (4 + 6i)− (5− 3i)i,

so we can take ξ = 1, η = i .

2. (10 pts) Same process. First, we divide 8 + i by 5− 2i:

8 + i

5− 2i
=

(8 + i)(5 + 2i)

29
=

38 + 21i

29
≈ 1 + i

so the quotient is 1 + i and the reminder is (8 + i)− (5− 2i)(1 + i) = 1− 2i.
We save this relation for later.

Next, we divide 5− 2i by 1− 2i:

5− 2i

1− 2i
=

(5− 2i)(1 + 2i)

5
=

9 + 8i

5
≈ 2 + 2i,

so the quotient is 2 + 2i and the remainder is (5− 2i)− (1− 2i)(2 + 2i) = −1.
We record this relation for later.

Finally, we divide 1−2i by−1. We of course get quotient−1+2i and remainder
0, so we stop. We have found that gcd(α, β) = −1, which we normalise as

gcd(α, β) = 1 since −1 is a unit and the gcd is only defined up to units. We

note that α and β are coprime.

To find ξ and η, we start with

1 = (5− 2i)(−1) + (1− 2i)(2 + 2i)

and we plug in the relation 1− 2i = (8 + i)− (5− 2i)(1 + i) to get

1 = (5−2i)(−1)+
(
(8+i)−(5−2i)(1+i)

)
(2+2i) = (8+i)(2+2i)+(5−2i)(−1−4i),

so we can take ξ = 2 + 2i, η = −1− 4i .
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Exercise 6.3: Factorization in Z[i] (25 pts)
Factor 19 + 17i into irreducibles in Z[i].

Solution 6.3:
We first compute that

N(19 + 17i) = 192 + 172 = 650 = 2× 52 × 13.

This tells us that 19 + 17i factors as

19 + 17i = α2α52α13,

where αN has norm N . Now, 2 and 13 are prime so α2 and α13 are irreducible, and
since 5 ≡ +1 (mod 4), the irreducibles dividing 5 have norm 51, so we have

19 + 17i = π2π5π
′
5π13,

where N(π2) = 2, N(π5) = N(π′5) = 5 and N(π13) = 13, and the πn are irreducible.
But we know the irreducibles of Z[i], so we deduce that up to units, we must

have π2 = 1 + i, π5 = a± bi, π′5 = a± bi, and π13 = c± di, where a, b (resp. c, d) is
a solution to a2 + b2 = 5 (resp. c2 + d2 = 13). We see that we can take a = 2, b = 1,
c = 3, d = 2.

Besides, if π′5 6= π5, then up to units π′5 = π5, so we would have 5 = π5π
′
5 |

(19 + 17i), which is clearly not the case. Thus we can assume that π′5 = π5. As a
result, the factorization looks like

19 + 17i = u(1 + i)(2± i)2(3± 2i)

where u ∈ Z[i]× = {±1,±i} is a unit. We can remove the factor immediately, by
computing

u(2± i)2(3± 2i) =
19 + 17i

1 + i
=

(19 + 17i)(1− i)
2

= 18− i.

We now need to determine if π5 = 2 + i or 2− i, and similarly for π13. For this,
we test whether 18 − i is divisible by 2 + i: if it is, then π5 = 2 + i, else we must
have π5 = 2− i. We compute that

18− i
2 + i

=
(18− i)(2− i)

5
= 7− 4i ∈ Z[i],

so (2+i) | (18−i) so π5 = 2+i. We can thus remove another factor π5, by computing

7− 4i

2 + i
=

(7− 4i)(2− i)
5

= 2− 3i.

Thus uπ13 = 2−3i, and we can absorb the unit u into π13 by redefining π13 = 2−3i,
which is still irreducible since we have only changed it by a unit.

Conclusion: our complete factorization is

19 + 17i = (1 + i)(2 + i)2(2− 3i).
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Exercise 6.4: Forcing a common factor (25 pts)
Let α, β ∈ Z[i].

1. (5 pts) Prove that N
(

gcd(α, β)
)
| gcd

(
N(α), N(β)

)
.

2. (5 pts) Explain why we can have N
(

gcd(α, β)
)
< gcd

(
N(α), N(β)

)
.

3. (5 pts) Suppose now that gcd
(
N(α), N(β)

)
is a prime p ∈ N. Prove that

p 6≡ 3 (mod 4).

4. (5 pts) Still assuming that that gcd
(
N(α), N(β)

)
is a prime p ∈ N, prove that

either α and β are not coprime, or α and β̄ are not coprime (or both).

5. (5 pts) Suppose more generally that gcd
(
N(α), N(β)

)
is a integer n > 2,

which we no longer assume to be prime. Is it true that either α and β are not
coprime, or α and β̄ are not coprime (or both)? Is it true that at least one of
N
(

gcd(α, β)
)

and N
(

gcd(α, β̄)
)

is n?

Solution 6.4:
1. Since the norm is multiplicative, we know that if δ | α then N(δ) | N(α).

As a result, if δ | α and δ | β, then N(δ) | N(α) and N(δ) | N(β), so
N(δ) | gcd

(
N(α), N(β)

)
. This applies in particular to δ = gcd(α, β), whence

the result.

2. Let p be a prime such that p ≡ 1 (mod 4), for instance p = 5. Then we know
that in Z[i], p decomposes as p = ππ̄, where π and π̄ are both irreducible of
norm p and are not associate to each other. Let us take α = π, β = π̄. Then
since they are irreducible and not associate to each other, they are coprime,
so N

(
gcd(α, β)

)
= 1, even though gcd

(
N(α), N(β)

)
= gcd(p, p) = p.

3. From gcd
(
N(α), N(β)

)
= p, we infer that possibly after swapping α and β

we must have p | N(α) but p2 - N(α). By considering the factorization of α
in Z[i], we deduce that α is divisible by an irreducible π of norm p. No such
irreducible exists if p ≡ −1 (mod 4), whence the result.

4. We have p | N(α), so α must be divisible by an irreducible π dividing p in
Z[i]. Similarly, there is an irreducible π′ | p such that π′ | β. But if p = 2,
then there is only one π | p up to units, so π′ must be associate to π so that
π divides both α and β, whereas if p ≡ 1 (mod 4) (which is the only other
possible case by the previous question), then π′ is associate either ot π, in
which case π divides both α and β again, or to π̄, in which case π divides both
α and β̄.

5. Let p | n be a prime. Then we have again p | N(α) and p | N(β), so as in the
previous question we find an irreducible of norm p which divides both α and
either β or β̄ (or both), so the answer to the first question is yes.

However, the answer to the second question is no. Consider for instance two
distinct primes `, p ∈ N which are both ≡ 1 (mod 4), so that they decompose
as ` = λλ̄, p = ππ̄ in Z[i], and the irreducibles λ, λ̄, π, π̄ are pairwise coprime,
and take α = λπ, β = λπ̄, so that β̄ = λ̄π. Then we have N(α) = N(β) = `p,
so that gcd

(
N(α), N(β)

)
= `p, but gcd(α, β) = λ and gcd(α, β̄) = π both

have norm < `p (` for the former, p for the latter).
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Exercise 6.5: Number of ways to write n as x2 + y2 (20 pts)
1. Let p ∈ N be a prime number, and a ∈ N be an integer.

(a) (3 pts) Prove that if p ≡ −1 (mod 4), then the number of elements of

Z[i] of norm pa is

{
0, if a is odd,
4, if a is even.

(b) (5 pts) Prove that if p ≡ 1 (mod 4), then the number of elements of Z[i]
of norm pa is 4(a+ 1).

(c) (2 pts) Prove the number of elements of Z[i] of norm 2a is 4 for all a ∈ N.

2. (5 pts) Deduce from the previous questions a formula for the number of ways
to write an integer n ∈ N as a sum of 2 squares in terms of its factorization
n =

∏
k p

ak
k into primes in Z.

3. (5 pts) How many ways are there to write 2000 as a sum of two squares? What
about 6000?

Solution 6.5:
1. We first notice that an element of norm pa must factor as a product of irre-

ducibles dividing p. We also notice that if α is a nonzero element of Z[i], then
the 4 elements ±α, ±iα are all distinct. Therefore,

(a) if p ≡ −1 (mod 4), then up to units the only irreducible dividing p is p
itself, so an element of norm pa must factor as upb where u is a unit and
b is an integer. In order to have N(upb) = pa, we need a = 2b, which is
impossible if a is odd; and if a is even, then we must have b = a/2 and
we get 4 distinct elements upb since we have 4 units u in Z[i]×;

(b) if p ≡ 1 (mod 4), then up to units thre are exactly 2 irreducibles dividing
p, say π and π̄, so an element of norm pa must factor as uπbπ̄c where u
is a unit and b, c are integers. In order to have N(uπbπ̄c) = pa, we need
a = b + c, whence a + 1 possible values for b (the integers from 0 to a
included), each of which determines the value of c = a − b. Since we
have 4 units u in Z[i]×, we thus get 4(a + 1) elements of norm pa; they
are all distinct since the πbπ̄a−b are non-associate by the uniqueness of
factorization in Z[i];

(c) finally, if p = 2, then up to units the only irreducible dividing p is 1 + i,
so an element of norm pa must factor as u(1 + i)b where u is a unit and
b is an integer. In order to have N(u(1 + i)b) = pa, we need a = b so b is
fixed, so we get 4 distinct elements u(1 + i)a from the 4 units u in Z[i]×.

2. First of all, the number of ways to write n as a sum of 2 squares is the same
as the number of elements of Z[i] of norm n. Now, if α ∈ Z[i] has norm
n =

∏
k p

ak
k with the pk distinct primes, then its factorization in Z[i] must be

of the form
α = u

∏
k

αk

where αk ∈ Z[i] is the part of the factorisation formed of the irreducibles
dividing pk, and we must have N(αk) = pakk . By the previous question ,we
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have a formula for the number of such αk’s, but we must count them up to
units since we can gather the units in the factorization of αk into the unit u
at the front of the factorisation of α. Therefore, we must divide the formulas
from the previous question by 4, multiply them, and multiply the result by 4
to take the unit u into account. As a conclusion, the number of ways to write
n as a sum of 2 squares is

4
∏
k

pk≡1(4)

(1+ak)
∏
k

pk≡−1(4)

1ak even =

{
4
∏

p≡1(4)(1 + vp(n)), if vp(n) is even for all p ≡ 1 (4),

0, else,

where 1ak even means 1 if ak is even and 0 else.

Remark: This is also either 0 or the number of divisors of n that are products
of primes ≡ 1 (mod 4) only.

3. Since 2000 = 24× 53 and 5 ≡ 1 (mod 4), the number of ways to write 2000 as
a sum of 2 squares is

4(3 + 1) = 16.

Also, since 6000 = 24× 3× 53 and since 3 ≡ −1 (mod 4) has odd multiplicity,
there are 0 ways to write 6000 as a sum of 2 squares.

The exercise below is not mandatory. It is not worth any points, and
is given here for you to practise. The solutions will be made available
with the solutions to the other exercises.

Exercise 6.6: Integers of the form x2 + xy + y2

Let ω = eπi/3 = 1+i
√
3

2
∈ C, and let Z[ω] = {a+ bω | a, b ∈ Z}. Note that ω satisfies

ω2 − ω + 1 = 0 and ω6 = 1.
We define the norm of an element α ∈ Z[ω] by N(α) = αᾱ = |α|2.

1. Check that Z[ω] is a domain.

2. Prove that N(a + bω) = a2 + ab + b2. Deduce that the set of integers of the
form x2 + xy + y2, x, y ∈ Z, is stable under multiplication.

3. Prove that an element of Z[ω] is a unit iff. its norm is 1. Deduce that the set
of units of Z[ω] is

Z[ω]× = {ω, ω2, ω3 = −1, ω4, ω5, ω6 = 1}.

4. Prove that Z[ω] is euclidian.

Hint: {1, ω} is an R-basis of C.

5. Deduce that Z[ω] is a UFD.

6. Let p 6= 3 be a prime. Prove that if p 6= 2, then
(−3
p

)
=
(
p
3

)
, and deduce that

the equation x2 + x+ 1 = 0 has solutions in Z/pZ iff. p ≡ 1 (mod 3).
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7. Prove that the primes p ∈ N decompose in Z[ω] as follows:

(a) if p = 3, then 3 = ω5(1 + ω)2 (note that ω5 is a unit),

(b) if p ≡ 1 (mod 3), then p = ππ̄, where π ∈ Z[ω] is irreducible and has
norm p,

(c) if p ≡ −1 (mod 3), then p remains irreducible in Z[ω].

Hint: Prove that if p = a2 + ab + b2, then at least one of a and b is not
divisible by p.

8. What are the irreducibles in Z[ω]?

9. Deduce from the previous questions that an integer n ∈ N is of the form
x2 + xy + y2, x, y ∈ Z iff. for all primes p ≡ −1 (mod 3), the p-adic valuation
vp(n) is even.

10. Adapt the previous exercise to find a formula for the number of pairs (x, y),
x, y ∈ Z such that x2 + xy + y2 = n in terms of the factorization of n in Z.

Solution 6.6:
1. It is clear that Z[ω] is stable under addition and subtraction, and for multipli-

cation we have

(a+ bω)(c+ dω) = ac+ (ad+ bc)ω + bd(ω − 1) = (ac− bd) + (ad+ bc+ bd)ω

since ω2 = ω−1, so Z[ω] is a ring. Besides, the product of 2 nonzero complexes
is nonzero, so Z[ω] is indeed a domain.

2. Since ω ∈ C \R, the complex roots of the polynomial x2 − x+ 1 are ω and ω̄,
so we have ω + ω̄ = 1 and ωω̄ = 1. Therefore,

N(a+ bω) = (a+ bω)(a+ bω̄) = a2 + ab(ω + ω̄) + b2ωω̄ = a2 + ab+ b2.

Besides, since clearly N(αβ) = N(α)N(β), we deduce that the set of integers
of the form a2 + ab+ b2, a, b ∈ Z, is stable under multiplication.

3. If α is a unit, then N(α)N(α−1) = N(1) = 1, whence N(α) = 1 since norms
are positive integers. Conversely, if N(α) = 1, then α is invertible of inverse
ᾱ. Therefore, the units are the a+ bω with a2 + ab+ b2 = 1. From

a2 + ab+ b2 = (a+ b/2)2 +
3

4
b2

we see that |b| 6 1.

For b = −1, we must have a = 0 or 1, for b = 0, we must have a = ±1, and
for b = 1, we must have a = 0 or −1, so there are exactly 6 units. But ω is a
unit since 1 = ωω̄ = ω(1 − ω), so all powers of ω are a also units, and since
ω = eπi/3, the sequence of powers of ω is periodic of period exactly 6, so all 6
units show up this way.
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4. Observe first that if we extend the norm to all of C by setting N(z) = zz̄, we
have

N(λ+ µω) = λ2 + λµ+ µ2 (?)

for all λ, µ ∈ R.

Let now α, β ∈ Z[ω], β 6= 0; we want to show that there exist γ, ρ ∈ Z[ω] with
α = βγ + ρ and N(ρ) < N(β).

We have α/β ∈ C, so since {1, ω} is an R-basis of C there are λ, µ ∈ R such
that α/β = λ + µω. Let l,m ∈ Z be such that |l − λ| 6 1

2
and |m − µ| 6 1

2
,

and let γ = l+mω ∈ Z[ω] and ρ = α−βγ ∈ Z[ω]. Then N(α
β
−γ) 6 1

4
+ 1

4
+ 1

4

by (?), so

N(ρ) = N(α− βγ) = N(
α

β
− γ)N(β) 6

3

4
N(β) < N(β).

5. The proof is the same as for Z and Z[i]: now that we have euclidian divi-
sion available, we can prove Bézout, and deduce Gauss’s lemma and then the
uniqueness of factorization from there.

6. (Compare with question 2 of exercise 5.4) Suppose first that p 6= 2, 3. The we
have (

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)p

′
(−1)

3−1
2
p′
(p

3

)
=
(p

3

)
which is +1 if p ≡ 1 (mod 3), and −1 if p ≡ −1 (mod 3). Now, the discrimi-
nant of x2 + x + 1 is −3, so we see that this polynomial has 2 roots mod p if
p ≡ 1 (mod 3), and none if p ≡ −1 (mod 3). Also, it has no roots mod 2, so
the conclusion is also true for p = 2.

7. (a) Checking that 3 = ω5(1 + ω)2 is a mere matter of calculation.

(b) If p ≡ 1 (mod 3), then by the previous question there exists x ∈ Z such
that p | (x2 + x + 1) = (x − ω)(x − ω̄) = (x − ω)(x + 1 − ω). Both of
these fators lie in Z[ω], and p clearly does not divide them, so by Gauss’s
lemma p is not irreducible, so we may write p=ππ′ with π, π′ ∈ Z[ω]
non-units. Since N(p) = p2, we must haveN(π) = N(π′) = p, so π and
π′ are irreducible and π′ = π̄.

(c) If p ≡ −1 (mod 3) were reducible in Z[ω], then since N(p) = p2, it would
factor as a product of two irreducibles of norm p. Let a + bω be one
of them; then we would have p = N(a + bω) = a2 + ab + b2. If a and
b were both divisible by p, then a2 + ab + b2 would be divisible by p2,
which is absurd. But if p - a, then we get x2 + x + 1 = 0 in Z/pZ
with x = ba−1 mod p, which contradicts the previous question. Same
thing if p - b. So we have reached a contradiction, which shows that p is
irreducible.

8. Every α ∈ Z[ω] divides its norm, which lies in N and is thus a product of prime
numbers. We have determined how these prime numbers decompose in Z[ω] in
the previous question, so we have found all irreducibles: they are 1 +ω (norm
3), the primes p ≡ −1 (mod 3) (norm p2), and the two conjugate irreducibles
dividing each prime p ≡ 1 (mod 3) (and we can check that these two are never
associate to each other by testing all 6 units, but this is tedious), which have
norm p.
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9. This is now the same proof as for Z[i], taking what we know abot the irre-
ducibles and their norms into account.

10. We find that this number is{
6
∏

p≡1(3)(1 + vp(n)), if vp(n) is even for all p ≡ 1 (3),

0, else

(note that this time we have 6 units).

(This is either 0 or the number of divisors of n that are products of primes
≡ 1 (mod 3) only.)
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