
Math 261 — Exercise sheet 5
http://staff.aub.edu.lb/~nm116/teaching/2017/math261/index.html

Version: October 23, 2017

Answers are due for Monday 23 October, 11AM.

The use of calculators is allowed.

Exercise 5.1: 67
√

2 mod 101 (10 pts)
How many elements x ∈ Z/101Z satisfy x67 = 2? Compute them.

Note: 101 is prime.

Solution 5.1:
Since 67 is coprime to 101− 1 = 100, the map

(Z/101Z)× −→ (Z/101Z)×

x 7−→ x67

is 1-to-1. In particular, there is a unique x such that x67 = 2, and it is given by the
formula x = 267−1

, where 67−1 denotes the inverse of 67 mod 100. We compute that
100 = 67 + 33, and 67 = 2 × 33 + 1, whence 67 × 3 − 2 × 100 = 1 so 67−1 = 3, so
the value of this x is

x = 23 = 8.

Exercise 5.2: Legendre symbols (21 pts)
Compute the following Legendre symbols (7 pts each):

1.

(
10

1009

)
,

2.

(
261

2017

)
,

3.

(
−77

9907

)
.

Note: 1009, 2017 and 9907 are prime.
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Solution 5.2:

1.

(
10

1009

)
=

(
2

1009

)(
5

1009

)
= +1×+

(
1009

5

)
since 1009 ≡ 1 (mod 8) and 1009 (or 5) ≡ +1 (mod 4)

=

(
9

5

)
= +1

since 1009 ≡ 9 (mod 5) and 9 is obviously a square mod 5.

2.

(
261

2017

)
=

(
32

2017

)(
29

2017

)
= +1×+

(
2017

29

)
since 32 is obviously a square and since 2017 (or 29) ≡ +1 (mod 4)

=

(
16

29

)
= +1

since 2017 ≡ 16 = 42 (mod 29).

3.

(
−253

9923

)
=

(
−1

9923

)(
11

9923

)(
23

9923

)
= −1×−

(
9923

11

)
×−

(
9923

23

)
since 253 = 11× 23 and 9923, 11 and 23 are all ≡ −1 (mod 4)

= −
(

1

11

)(
11× 302

23

)
since 9923 ≡ 1 (mod 11) and 9923 ≡ 9900 = 11× 302 (mod 23)

= −
(

11

23

)
= −−

(
23

11

)
since 11 and 23 are both ≡ −1 (mod 4)

=

(
1

11

)
= +1.

Exercise 5.3: Quadratic equations mod 55 (21 pts)
Use the Chinese remainders theorem and Legendre symbols to determine the number
of solutions in Z/55Z to these equations (7 pts each):

1. x2 − x + 8 = 0,

2. x2 + 3x + 7 = 0,

3. x2 − 4x− 1 = 0.

Note: 55 is NOT prime.
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Solution 5.3:
Since 5 and 11 are coprime, by CRT we have a 1-to-1 correspondence

Z/55Z←→ Z/5Z× Z/11Z,

so that for each equation, the number of solutions in Z/55Z is the product of the
number of solutions in Z/5Z and of that of solutions in Z/11Z. These numbers
are in turn determined by the “quadratic residue-ness” of the discriminant of the
equation.

1. The discriminant is ∆ = 1−4×8 = −31. We have
(

∆
5

)
=
(−1

5

)
= +1, whence

2 solutions in Z/5Z, but
(

∆
11

)
=
(

2
11

)
= −1, whence no solutions in Z/11Z. So

no solutions in Z/55Z.

2. This time the discriminant is ∆ = −19, and we have
(

∆
5

)
=
(

∆
11

)
= +1,

whence 2 solutions in Z/5Z and 2 solutions in Z/11Z, so 4 solutions in Z/55Z.

3. This time the discriminant is ∆ = 20, and we have
(

∆
5

)
= 0, whence 1 solution

in Z/5Z, and
(

∆
11

)
= +1, whence 2 solutions in Z/11Z. So we have 2 solutions

in Z/55Z.

Exercise 5.4: Applications of (−3p ) (26 pts)
1. (6 pts) Let p > 3 be a prime. Prove that −3 is a square mod p if and only if

p ≡ 1 (mod 6).

2. (8 pts) An element x ∈ Z/pZ is called a cubic root of unity if it satisfies x3 = 1.
Use the previous question and the identity x3 − 1 = (x − 1)(x2 − x + 1) to
compute the number of cubic roots of unity in Z/pZ in terms of p mod 6.

3. (8 pts) Find another way to compute the number of cubic roots of unity in
Z/pZ in terms of p mod 6 by considering the map

(Z/pZ)× −→ (Z/pZ)×

x 7−→ x3.

4. (4 pts) Use question 1. of this exercise to prove that there are infinitely many
primes p such that p ≡ 1 (mod 6).

Hint: Suppose on the contrary that there are finitely many, say p1, · · · , pk, and
consider N = 12(p1 · · · pk)2 + 1.

Solution 5.4:
1. We compute that(

−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)p

′
(−1)

3−1
2

p′
(p

3

)
=
(p

3

)
.

Besides, as p > 3, we know that p ≡ ±1 (mod 6). So if p ≡ +1 (mod 6), then
p ≡ +1 (mod 3), so

(
p
3

)
=
(

1
3

)
= +1, but if p ≡ −1 (mod 6), then p ≡ −1

(mod 3), so
(
p
3

)
=
(−1

3

)
= −1 since 3 ≡ −1 (mod 4).
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2. Cubic roots of unity are by definition the same as the roots of the polynomial
x3 − 1 = (x − 1)(x2 − x + 1). The factor x − 1 gives the obvious root x = 1.
Also, the discriminant of x2−x+1 is ∆ = −3, so by the previous question this
factor has 2 distinct roots when p ≡ +1 (mod 6), and 0 roots when p ≡ −1
(mod 6). Besides, these roots can never be x = 1, since x2 − x + 1 assumes
the value 1 at x = 1, and 1 6= 0 in Z/pZ for all p.

Thus the number of cubic roots of unity in Z/pZ is 1 + 2 = 3 when p ≡ +1
(mod 6), and 1 + 0 = 1 when p ≡ −1 (mod 6).

3. If p ≡ +1 (mod 6), then 6 | (p − 1), so gcd(3, p − 1) = 3, which means that
the map

(Z/pZ)× −→ (Z/pZ)×

x 7−→ x3

is 3-to-1. Since 1 is clearly in its image (it is reached by x = 1), it is reached
by exactly 3 values of x; in other words, there are 3 cubic roots of unity.

On the other hand, if p ≡ −1 (mod 6), then gcd(3, p− 1) = 1, so the map

(Z/pZ)× −→ (Z/pZ)×

x 7−→ x3

is 1-to-1, so it assumes the value 1 exactly once, so there is 1 cubic root of
unity.

4. Let us suppose that p1, · · · , pk are all the primes ≡ +1 (mod 6), let N =
12(p1 · · · pk)2 +1, and let p be a prime dividing N (which exists since obviously
N > 1). Then p cannot be 2, nor 3, nor any of the p1, · · · , pk, for else it would
divide 1. So we must have p ≡ −1 (mod 6). But since p | N , we have
−1 ≡ 12(p1 · · · pk)2 (mod p), so −3 ≡ 36(p1 · · · pk)2 = (6p1 · · · pk)2 is a square
mod p, which contradicts question 1.

Exercise 5.5: Pépin’s test (22 pts)
Recall (cf sheet 1 exercise 4) that the n-th Fermat number is Fn = 22n + 1, where
n ∈ N.

1. (2 pts) Prove that Fn ≡ −1 (mod 3).

2. (10 pts) Prove that if Fn is prime, then 3(Fn−1)/2 ≡ −1 (mod Fn).

3. (10 pts) Conversely, prove that if 3(Fn−1)/2 ≡ −1 (mod Fn), then Fn is prime.
Hint: what can you say about the multiplicative order of 3 mod Fn?

Remark: This primality test, named after the 19th century French mathemati-
cian Théophile Pépin, only applies to Fermat numbers, but is much faster than the
general-purpose tests that can deal with any integer. It was used in 1999 to prove
that F24 is composite, which is quite an impressive feat since F24 has 5050446 digits!
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Solution 5.5:
1. Since 2 ≡ −1 (mod 3), we have

Fn = 22n + 1 ≡ (−1)2n + 1 = 1 + 1 = 2 ≡ −1 (mod 3)

as n > 1.

2. If Fn = p is prime, then we have 3(Fn−1)/2 = 3p′ ≡
(

3
p

)
(mod p), and

(
3
p

)
=(

p
3

)
by quadratic reciprocity since clearly p = Fn ≡ 1 (mod 4). Finally, by the

previous question
(
p
3

)
=
(−1

3

)
= −1, whence the result.

3. If 3(Fn−1)/2 ≡ −1 (mod Fn), then 3Fn−1 ≡ (−1)2 = 1 (mod Fn), so the multi-
plicative order of 3 mod Fn divides Fn − 1 = 22n , which is a power of 2. Since
3(Fn−1)/2 ≡ −1 6≡ 1 (mod Fn), and since 2 is the only prime dividing Fn − 1,
this order is in fact exactly Fn− 1. So the powers of 3 give us Fn− 1 elements
in (Z/FnZ)×. But the number of elements in (Z/FnZ)× is at most Fn − 1
since 0 is not invertible, so the powers of 3 give us all of (Z/FnZ)× (i.e. 3 is
a primitive root mod Fn) and all nonzero elements in Z/FnZ are invertible.
This means that Z/FnZ is a field, which implies that Fn is prime.

The exercises below are not mandatory. They are not worth any
points, and are given here for you to practise. The solutions will be
made available with the solutions to the other exercises.

Exercise 5.6: Sums of Legendre symbols
Let p ∈ N be an odd prime.

1. Compute
∑

x∈Z/pZ

(
x

p

)
.

2. Compute
∑

x∈Z/pZ

(
x

p

)(
x + 1

p

)
.

Hint: write x(x + 1) = x2(1 + 1
x
) wherever legitimate.

Solution 5.6:
1. In Z/pZ, we have one zero, p′ nonzero squares, and p′ nonzero nonsquares, so

this sum is
0 + p′ − p′ = 0.

2. We compute∑
x∈Z/pZ

(
x

p

)(
x + 1

p

)
=
∑

x∈Z/pZ

(
x(x + 1)

p

)
=

∑
x∈(Z/pZ)×

(
x(x + 1)

p

)
since the term for x = 0 is 0

=
∑

x∈(Z/pZ)×

(
x2(1 + 1/x)

p

)
=

∑
x∈(Z/pZ)×

(
1 + 1/x

p

)
=

∑
x∈(Z/pZ)×

(
1 + x

p

)
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since the map x 7→ 1/x induces a permutation of (Z/pZ)×

=
∑

x∈Z/pZ
x 6=1

(
x

p

)
=
∑

x∈Z/pZ

(
x

p

)
−
(

1

p

)
= 0− 1 = −1

by the previous question.

Remark: If we fix p and take x ∈ Z/pZ uniformly at random, the first formula

tells us that the expected value of
(

x
p

)
is 0, and the second one that the covariance

of
(

x+1
p

)
and of

(
x
p

)
is −1

p
. This means that for large p, the value of

(
x+1
p

)
is

approximately independent of that of
(

x
p

)
.

Exercise 5.7: A test for higher powers
Let p ∈ N be a prime, k ∈ N be an integer, g = gcd(p−1, k), and p1 = (p−1)/g ∈ N.
Finally, let x ∈ (Z/pZ)×.

1. Prove that x is a k-th power if and only if xp1 = 1.

2. (Application) Is 2 a cube in Z/13Z? What about 5?

3. For general x, what kind of number is xp1 , i.e. which equation does it satisfy?

4. Use the above to define a generalization of the Legendre symbol, and state a
couple of its properties.

Solution 5.7:

1. Suppose that x = yk is a k-th power. Then we have xp1 = ykp1 = y
k
g

(p−1) = 1
by Fermat’s little theorem.

So every k-th power is a root of the polynomial xp1 − 1. This polynomial has
degree p1, so it has at most p1 roots; on the other hand, we know that one in g
elements of (Z/pZ)× is a k-th power, so there are (p− 1)/g = p1 k-th powers,
all of which are roots of xp1 − 1 by the above. Thus the roots of xp1 − 1 are
exactly the k-th powers, whence the result.

2. We take p = 13, k = 3, so p1 = 4.

We have 2p1 = 16 ≡ 3 6≡ 1 (mod 13), so 2 is not a cube mod 13, but 5p1 ≡ 1
(mod 13), so 5 is a cube mod 13 (and it has g = 3 cubic roots in Z/13Z).

3. By Fermat’s little theorem, we have

1 = xp−1 = xp1g = (xp1)g.

So the number y = xp1 always satisfies yg = 1; in more pedant terms, it is a
g-th root of unity.

4. We are thus led to defining
(

x
p

)
k

= xp1 .
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We have(
x

p

)
k

=


0, if x = 0,
1, if x is a nonzero k-th power,
another g-th root of unity, else.

Besides, it follows immediately from the definition that
(

xy
p

)
k

=
(

x
p

)
k

(
y
p

)
k

for all x, y ∈ Z/pZ, and that
(
−1
p

)
k

= (−1)p1 .

Remark: In order to make this generalization of the Legendre symbol really
practical, we need a generalization of the quadratic reciprocity law. Such a
generalization exists, and is a consequence of the more general Artin reci-
procity law, which stands at the pinnacle of 20th century number theory, but
is unfortunately far beyond the scope of this course.
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