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Answers are due for Monday 16 October, 11AM.

The use of calculators is allowed.

Exercise 4.1: Primitive roots (24pts)
1. (8pts) Find a primitive root for Z/7Z. Justify your answer in detail.

2. (8pts) Same question for Z/11Z.

3. (8pts) Same question for Z/23Z.

Solution 4.1:
1. Fermat’s little theorem tells us that every x ∈ (Z/7Z)× has order dividing

7− 1 = 6 = 2× 3. Therefore, x is a primitive root iff. it satisfies x2 6= 1 and
x3 6= 1.

Let us try x = 2. We have 22 = 4 6= 1, but 23 = 8 = 1 so 2 is not a primitive
root (in fact, since 2 6= 1 it does not have order 1, and since 3 is prime, the
identity 23 = 1 tells us that the multiplicative order of 2 is 3).

Let us try again, with x = 3. We find 32 = 9 6= 1 and 33 = 27 = −1 6= 1, so 3
is a primitive root.

Remark: we know that there are in fact φ(6) = 2 primitive roots; the other
one is 3−1 = 5.

2. We have 11− 1 = 10 = 2× 5, so we are looking for an x 6= 0 such that x2 6= 1
and x5 6= 1.

Let us try x = 2. This time we are luckier: we have 22 = 4 6= 1 and 25 = 32 =
−1 6= 1, so 2 is a primitive root.

Remark: we know that there are in fact φ(10) = 4 primitive roots; by exercise
4.2, they are the 2m where m ∈ (Z/10Z)∗, in other words, 2, 8, 7, and 6.

3. We have 23−1 = 22 = 2×11, so we are looking for an x 6= 0 such that x2 6= 1
and x11 6= 1.

Let us try x = 2. Bad luck: we have 22 = 4 6= 1, but 211 = 1, so 2 is a not
primitive root.

Let us try again with x = 3: we have 32 = 9 6= 1, but again 311 = 1, so 3 is
not a primitive root either.
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The next value is x = 4, however we can see directly that 411 = (22)11 = 222 =
(211)2 = 1, so 4 is not going to work either.

But let us not give up! For x = 5 we have 52 = 25 = 2 6= 1, and 511 = −1 6= 1,
so 5 is a primitive root.

Remark: we know that there are in fact φ(22) = 10 primitive roots; by exercise
4.2, they are the 5m where m ∈ (Z/22Z)∗. Also, to compute x11, it is a good
idea to write something like x11 = x × (x5)2, and to reduce mod 23 at every
step.

Final remarks: in Z/pZ, we can only have x2 = 1 when x = ±1. So as long as
we did not consider x = −1 (x = 1 would be really too silly), we didn’t have to care

about x2 being 6= 1. Also, we have x
p−1
2 =

(
x
p

)
= ±1; this explains why x

p−1
2 = −1

whenever x is a primitive root.

Exercise 4.2: More primitive roots (32 pts)
Let p ∈ N be prime, and let g ∈ (Z/pZ)× be a primitive root.

1. (8 pts) Let a ∈ Z. Give a necessary and sufficient condition on a for ga to be
a primitive root in Z/pZ.

2. (8 pts) Prove that if a is prime, then ga is a primitive root in Z/pZ if and only
if p 6≡ 1 (mod a).

3. (8 pts) Show that the previous assertion is no longer valid when a is not
assumed to be prime, by finding a counterexample.

4. (8 pts) Is every primitive root of Z/pZ of the form ga for some a ∈ Z? Justify
your answer.

Solution 4.2:
1. By definition of g, the multiplicative order of g is p− 1. As a consequence, for

every a the multiplicative order of ga is p−1
gcd(p−1,a)

. Therefore, ga is a primitive
root iff. a and p− 1 are coprime.

2. By the previous question, ga is a primitive root iff. p − 1 and a are coprime.
Since a is prime, this is equivalent to a not dividing p− 1, which is equivalent
to p not being congruent to 1 mod a.

3. In view of the previous questions, we will get a counterexample if we can find
a and p such that a does not divide p− 1 and yet gcd(a, p− 1) 6= 1, i.e. such
that 1 < gcd(p− 1, a) < a.

So for instance we can take a = 4, p = 7. Indeed, we then have that p 6 equiv1
(mod a), and yet the multiplicative order of ga is 6

gcd(4,6)
= 3 < 6. (To be

even more concrete, we can take g = 3 as in the previous exercise, and then
ga = 34 = 81 = 11 = 4 is not a primitive element since 43 = 64 = 1 + 63 = 1.)

4. Yes, simply because by definition of primitive roots, every nonzero element of
Z/pZ, primitive root or not, is of the form ga for some a ∈ N.
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Exercise 4.3: (24 pts)
Prove that 23n+5 + 3n+1 is divisible by 5 for all n ∈ N.

Solution 4.3:
Since 2 ∈ (Z/5Z)×, its multiplicative order mod 5 is a divisor of 4 (in fact, it can be
checked by the methods of exercise 4.1 that its order is exactly 4, i.e. 2 is a primitive
root mod 5), so 2m mod 5 only depends on m mod 4. And since 3n+ 5 mod 4 only
depends on n mod 4, we have that 23n+5 mod 5 only depends on n mod 4.

Similarly, the multiplicative order of 3 mod 5 divides 4 (its in is fact again exactly
4), so 3m mod 5 only depends on m mod 4, and so 3n+1 mod 5 only depends on
n mod 4. As a result, the expression 23n+5 + 3n+1 mod 5 only depends on n mod 4.
Thus all we have to do is check that 23n+5 + 3n+1 ≡ 0 (mod 5) for 4 values of n
representing all 4 elements of Z/4Z, such as 0, 1, 2, 3, or even cleverer, −1, 0, 1, 2.

Other solution: instead of checking for 4 values of n, which is easy but still a bit
tedious, we can directly compute that 3n+ 5 ≡ −n+ 1 mod 4, so that

23n+5 ≡ 2−n+1 ≡ 2× 3n (mod 5)

since 3 is the inverse of 2 mod 5; as a result, we have

23n+5 + 3n+1 ≡ 2× 3n + 3× 3n = 5× 3n ≡ 0 (mod 5).

Exercise 4.4: A really big number (20 pts)
Compute the remainder of 1621000 when divided by 7.

Hint: This number is so large that most calculators and computers won’t be able
to help you, but congruences and multiplicative orders will...

Solution 4.4:
We want to reduce 1621000 mod 7.

We have 16 ≡ 2 (mod 7), so 1621000 ≡ 221000 (mod 7). Next, we see that 23 ≡ 1
(mod 7), so 2m mod 7 only depends on m mod 3 (we are using the fact that the
multiplicative order of 2 mod 7 divides 3; actually it is exactly 3). So we want to
reduce 21000 mod 3. This is easy: we have 2 ≡ −1 (mod 3), so 21000 ≡ (−1)1000 ≡ 1
(mod 3). Conclusion:

1621000 ≡ 221000 ≡ 21 ≡ 2 (mod 7),

so the remainder is 2.

The exercises below are not mandatory. They are not worth any
points, and are given here for you to practise. The solutions will be
made available with the solutions to the other exercises.
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Exercise 4.5: Largest possible orders
1. Prove that for every n ∈ N, and for every x ∈ Z/nZ, the additive order of x

is at most n.

2. Prove that for every n ∈ N, there exists an x ∈ Z/nZ whose additive order is
exactly n.

3. Prove that for every n ∈ N, and for every x ∈ (Z/nZ)×, the multiplicative
order of x is at most φ(n).

4. Find an n ∈ N such that every x ∈ (Z/nZ)× has multiplicative order < φ(n).

Solution 4.5:
1. We have x + x + · · · + x (n times) = nx = 0x = 0, so the additive order of x

divides n.

2. Remember that the additive order of x is the smallest m ∈ N such that mx =
0 ∈ Z/nZ. So if we take x = 1, then we have mx = 0 iff. m = 0 iff. n | m, so
the additive order of 1 is n. (In fact, we can show similarly that the additive
order of any invertible element of Z/nZ is exactly n, and that conversely the
only elements of additive order n are the invertibles.)

3. The multiplicative order of x is the smallest m ∈ N such that xm = 1 ∈
(Z/nZ)×. We have xφ(n) = 1 by Fermat’s little theorem, so the multiplicative
order of x divides φ(n).

4. We can take n = 8: then every x ∈ (Z/8Z)× satisfies x2 = 1, so is of order
6 2, whereas φ(8) = 4 > 2.

Exercise 4.6: Possible orders
1. Let n ∈ N. Explain why the additive order of any x ∈ Z/nZ is a divisor of n,

and prove that for any d | n, there exists an x ∈ Z/nZ of order d.

2. Let p ∈ N be a prime. Explain why the multiplicative order of any x ∈ (Z/pZ)×

is a divisor of p − 1, and prove that for any d | (p − 1), there exists an
x ∈ (Z/pZ)× of multiplicative order d.

3. Let n ∈ N. Is it true that for any d | φ(n), there exists an x ∈ (Z/nZ)× of
multiplicative order d?

4. Suppose that n ∈ N, and that there exists an x ∈ (Z/nZ)× of multiplicative
order n− 1. Prove that n must be prime.

Solution 4.6:
1. For all x, we have nx = 0x = 0 so the additive order of x divides n. If d | n,

then we can consider x = n
d
∈ Z/nZ, and it is clear that mx = 0 ∈ Z/nZ

precisely when d | m, so this x is of additive order exactly d.
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2. By Fermat’s little theorem, the multiplicative order of x divides φ(p), and
φ(p) = p− 1 since p is prime. Let now g ∈ (Z/pZ)× be a primitive root (there
exists at least one since p is prime), then by definition gm = 1 iff. (p− 1) | m.

So if d | (p− 1), then x = g
p−1
d satisfies

xm = 1⇐⇒ g
p−1
d
m = 1⇐⇒ (p− 1) | p− 1

d
m⇐⇒ d | m,

which shows that the multiplicative order of x is exactly d.

3. No. In fact, this is false when d = φ(n), as we saw at the end of the previous
exercise.

4. Since x ∈ (Z/nZ)× is invertible, all its powers are also invertible (of inverse
the same power of the inverse of x). But x has multiplicative order n− 1, so
the sequence of its power is periodic of period exactly n − 1, so x has n − 1
distinct powers. So we have at least n − 1 invertibles in Z/nZ. But in Z/nZ
there are n elements, and clearly 0 cannot be invertible1, so we see that all
nonzero elements of Z/nZ are invertible. This means that Z/nZ is a field, so
n must be prime.

1Well, technically 0 is invertible in Z/1Z. But on the other hand, the order of any element is
at least 1, so n− 1 > 1 so we must have n > 2 in this exercise. But I should have made that clear
in the question.
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