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Version: September 25, 2017

Answers are due for Monday 02 October, 11AM.

The use of calculators is allowed.

Exercise 3.1: Factorization of polynomials mod p (40 pts)
Let f(x) be the polynomial x3 − 3x2 − 1. Factor f(x)

1. (10 pts) mod 2,

2. (10 pts) mod 3,

3. (10 pts) mod 5,

4. (10 pts) mod 7.

Make sure that your factorizations are complete, i.e. prove that the factors that
you find are irreducible.

Solution 3.1:
A polynomial of degree 3 is either irreducible, or splits as degree 2 × degree 1, or
into 3 factors of degree 1 (not necessarily distinct). As a result, we can always factor
it if we know what its roots are.

1. We have f(x) ≡ x3 + x2 + 1 (mod 2). Let us make a table of values in Z/2Z:

x 0 1
f(x) 1 1

We see that f(x) has no root in Z/2Z. Therefore, it is irreducible, so the
complete factorization is

f(x) ≡ x3 + x+ 1 (mod 2).

2. We have f(x) ≡ x3 − 1 (mod 3). Table of values:

x 0 1 2
f(x) 2 0 1

so the only root of f(x) in Z/3Z is 1 (alternative reasoning: by Fermat’s
little theorem, we have f(x) ≡ x − 1 (mod 3) for all x ∈ Z). So f(x) factors
as (x − 1)g(x) mod 3, where g(x) has degree 2. By Euclidian division over
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Z/3Z, we find that g(x) = x2 + x + 1 (alternative proof: use the identity
x3 − 1 = (x − 1)(x2 + x + 1), which is valid even over Z (as opposed to
mod 3)). Since the only root of f(x) in Z/3Z is x = 1, the only possible
root of g(x) is also x = 1; and indeed g(1) = 0. So now we know that
x3− 1 = (x− 1)2h(x), where h(x) has degree 1. Since its only possible root is
1,and since the coefficient of x3 in x3 − 1 is 1, we must have h(x) = x− 1. As
a conclusion, the complete factorization is

f(x) ≡ (x− 1)3 (mod 3).

We could also have seen this directly, by writing

x3 − 1 = x3 + (−1)3 ≡ (x− 1)3 (mod 3)

since we are in characteristic 3.

3. Table of values of f(x) mod 5:

x 0 1 2 3 4
f(x) 4 2 0 4 0

so f(x) has two roots in Z/5Z, namely 2 and 4. As a result, we have a
factorization of the form

f(x) ≡ (x− 2)(x− 4)g(x) (mod 5),

where g(x) has degree 1. Since the only roots of f(x) are 2 and 4, and since
the coefficient of x3 in f(x) is 1, we have either g(x) = x− 2 or g(x) = x− 4.

There are two ways to discover which: compute g(x) by dividing f(x) by
(x− 2)(x− 4) = x2 − x− 2 over Z/5Z, or divide f(x) by (x− 2)2; indeed, if
we get remainder 0, we will know that (x − 2)2 divides f(x), so the missing
factor g(x) must be x−2, else the missing factor is not x−2 so by elimination
is must be x− 4 (we could of course divide by (x− 4)2 instead of (x− 2)2 and
apply the same reasoning).

Either way, we find that g(x) = x− 2, so that the complete factorization is

f(x) ≡ (x− 2)2(x− 4) (mod 5).

4. Table of values of f(x) mod 7:

x 0 1 2 3 4 5 6
f(x) 6 4 2 6 1 0 2

so 5 is the only root of f(x) in Z/7Z.

As a result, we have

f(x) ≡ (x− 5)g(x) (mod 7)

with g(x) of degree 2, whose only possible root is 5. So either g(x) = (x− 5)2

(since the coefficient of x3 in f(x) is 1), or g(x) is irreducible.
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To figure out which, we can simply compute g(x) by dividing f(x) by (x− 5),
and test whether 5 is a root of g(x). We could also divide f(x) by (x − 5)2,
since if the remainder is 0 this will tell us that (x−5) | g(x); however if it is not
0 we will know that g(x) is irreducible, but we won’t know which polynomial
it is exactly, so this approach may fail. We could also simply test whether
f(x) ≡ (x− 5)3 (mod 7), but again, if this is not the case, we will know that
g(x) is irreducible, but not who it is.

So the safe way is to divide f(x) by (x− 5). We find that g(x) = x2 + 2x+ 3,
and x = 5 is not a root of it, so g(x) must be irreducible, and so the complete
factorization is

f(x) ≡ (x− 5)(x2 + 2x+ 3) (mod 7).

Remark 1: it is true that if x = a is a root of f(x), then f(x) is divisible by
(x−a)2 iff. x = a is also a root of the derivative f ′(x), but we did not see it in class
(not enough time). In this exercise, this fact makes the computations much easier
for p = 3 and p = 5.

Remark 2: If f(x) were reducible in Z[x], then its factorization in Z[x] would
survive mod p for every p. Therefore, the fact that there exists a p (namely, p = 2)
such that f(x) is irreducible mod p proves that f(x) is irreducible over Z.

Exercise 3.2: (20 pts)
Find an integer x such that x ≡ 12 (mod 7) and x ≡ 7 (mod 12).

Solution 3.2:
This is Chinese remainders: as 12 and 7 are coprime, we have a 1:1 correspondence

Z/84Z←→ Z/7Z× Z/12Z, (?)

and we are looking for a pre-image of (12 mod 7, 7 mod 12) under this correspon-
dence.

Let us start by finding u and v such that 7u + 12v = 1. Either we spot them
rightaway, or we use the Euclidian algorithm:

12 = 7 + 5

7 = 5 + 2

5 = 2× 2 + 1

whence

1 = 5− 2× 2 = 5− 2× (7− 5) = 3× 5− 2× 7 = 3(12− 7)− 2× 7 = 3× 12− 5× 7.

So, under the correspondence (?), 3× 12 = 36 is a preimage of (1 mod 7, 0 mod 12),
and −5× 7 = −35 is a preimage of (0 mod 7, 1 mod 12). As a result, since

(12 mod 7, 7 mod 12) = (5 mod 7, 7 mod 12)

= 5× (1 mod 7, 0 mod 12) + 7× (0 mod 7, 1 mod 12),

a preimage for (12 mod 7, 7 mod 12) is x = 5× 36 + 7×−35 = −65.
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Remark: Of course, any integer congruent to −65 (mod 84) works (for instance,
19). In fact, the Chinese remainder theorem tells us that the solutions are exactly
the numbers that are congruent to −65 (mod 84); no more, no less.

Exercise 3.3: (10 pts)
Compute φ(261) and φ(6000).

Solution 3.3:
Thanks to the (complete) factorizations 261 = 32 × 29 and 6000 = 24 × 3× 53 and
to the formula

φ(n) = N
∏
p|n

p prime

(
1− 1

p

)
,

we find that

φ(261) = 261(1− 1/3)(1− 1/29) = 32 × 29× 2

3
× 28

29
= 3× 2× 28 = 168

and that

φ(6000) = 24 × 3× 53 × 1

2
× 2

3
× 4

5
= 23 × 2× 52 × 4 = 1600.

Exercise 3.4: φ(n) is always even (30 pts)
Prove that φ(n) is even for all n > 3.

Solution 3.4:
Let n =

∏
i p

ai
i be the factorization of n, where the pi are distinct primes. Since φ

is multiplicative, we have

φ(n) =
∏
i

φ(paii ) =
∏
i

pai−1i (pi − 1).

If n is not a power of 2, then one of the pi is odd, so the term (pi − 1) is even and
φ(n) is even.

If n = 2a is a power of 2, then we have a > 2 since n > 3, and so φ(n) = 2a−1 is
also even.
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