Math 261 - Exercise sheet 3

http://staff.aub.edu.lb/~nm116/teaching/2017/math261/index.html
Version: September 25, 2017

Answers are due for Monday 02 October, 11AM.
The use of calculators is allowed.

Exercise 3.1: Factorization of polynomials mod p (40 pts)

Let $f(x)$ be the polynomial $x^{3}-3 x^{2}-1$. Factor $f(x)$

1. $(10 \mathrm{pts}) \bmod 2$,
2. (10 pts$)_{\bmod 3,}$
3. (10 pts) mod 5 ,
4. (10 pts) mod 7 .

Make sure that your factorizations are complete, i.e. prove that the factors that you find are irreducible.

Solution 3.1:

A polynomial of degree 3 is either irreducible, or splits as degree $2 \times$ degree 1 , or into 3 factors of degree 1 (not necessarily distinct). As a result, we can always factor it if we know what its roots are.

1. We have $f(x) \equiv x^{3}+x^{2}+1(\bmod 2)$. Let us make a table of values in $\mathbb{Z} / 2 \mathbb{Z}$:

$$
\begin{array}{r|ll}
x & 0 & 1 \\
\hline f(x) & 1 & 1
\end{array}
$$

We see that $f(x)$ has no root in $\mathbb{Z} / 2 \mathbb{Z}$. Therefore, it is irreducible, so the complete factorization is

$$
f(x) \equiv x^{3}+x+1 \quad(\bmod 2)
$$

2. We have $f(x) \equiv x^{3}-1(\bmod 3)$. Table of values:

$$
\begin{array}{r|lll}
x & 0 & 1 & 2 \\
\hline f(x) & 2 & 0 & 1
\end{array}
$$

so the only root of $f(x)$ in $\mathbb{Z} / 3 \mathbb{Z}$ is 1 (alternative reasoning: by Fermat's little theorem, we have $f(x) \equiv x-1(\bmod 3)$ for all $x \in \mathbb{Z})$. So $f(x)$ factors as $(x-1) g(x) \bmod 3$, where $g(x)$ has degree 2. By Euclidian division over
$\mathbb{Z} / 3 \mathbb{Z}$, we find that $g(x)=x^{2}+x+1$ (alternative proof: use the identity $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, which is valid even over \mathbb{Z} (as opposed to $\bmod 3)$). Since the only root of $f(x)$ in $\mathbb{Z} / 3 \mathbb{Z}$ is $x=1$, the only possible root of $g(x)$ is also $x=1$; and indeed $g(1)=0$. So now we know that $x^{3}-1=(x-1)^{2} h(x)$, where $h(x)$ has degree 1 . Since its only possible root is 1 , and since the coefficient of x^{3} in $x^{3}-1$ is 1 , we must have $h(x)=x-1$. As a conclusion, the complete factorization is

$$
f(x) \equiv(x-1)^{3} \quad(\bmod 3)
$$

We could also have seen this directly, by writing

$$
x^{3}-1=x^{3}+(-1)^{3} \equiv(x-1)^{3} \quad(\bmod 3)
$$

since we are in characteristic 3 .
3. Table of values of $f(x) \bmod 5$:

$$
\begin{array}{r|lllll}
x & 0 & 1 & 2 & 3 & 4 \\
\hline f(x) & 4 & 2 & 0 & 4 & 0
\end{array}
$$

so $f(x)$ has two roots in $\mathbb{Z} / 5 \mathbb{Z}$, namely 2 and 4 . As a result, we have a factorization of the form

$$
f(x) \equiv(x-2)(x-4) g(x)(\bmod 5),
$$

where $g(x)$ has degree 1 . Since the only roots of $f(x)$ are 2 and 4 , and since the coefficient of x^{3} in $f(x)$ is 1 , we have either $g(x)=x-2$ or $g(x)=x-4$.

There are two ways to discover which: compute $g(x)$ by dividing $f(x)$ by $(x-2)(x-4)=x^{2}-x-2$ over $\mathbb{Z} / 5 \mathbb{Z}$, or divide $f(x)$ by $(x-2)^{2}$; indeed, if we get remainder 0 , we will know that $(x-2)^{2}$ divides $f(x)$, so the missing factor $g(x)$ must be $x-2$, else the missing factor is not $x-2$ so by elimination is must be $x-4$ (we could of course divide by $(x-4)^{2}$ instead of $(x-2)^{2}$ and apply the same reasoning).
Either way, we find that $g(x)=x-2$, so that the complete factorization is

$$
f(x) \equiv(x-2)^{2}(x-4) \quad(\bmod 5)
$$

4. Table of values of $f(x) \bmod 7$:

$$
\begin{array}{r|lllllll}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline f(x) & 6 & 4 & 2 & 6 & 1 & 0 & 2
\end{array}
$$

so 5 is the only root of $f(x)$ in $\mathbb{Z} / 7 \mathbb{Z}$.
As a result, we have

$$
f(x) \equiv(x-5) g(x) \quad(\bmod 7)
$$

with $g(x)$ of degree 2 , whose only possible root is 5 . So either $g(x)=(x-5)^{2}$ (since the coefficient of x^{3} in $f(x)$ is 1), or $g(x)$ is irreducible.

To figure out which, we can simply compute $g(x)$ by dividing $f(x)$ by $(x-5)$, and test whether 5 is a root of $g(x)$. We could also divide $f(x)$ by $(x-5)^{2}$, since if the remainder is 0 this will tell us that $(x-5) \mid g(x)$; however if it is not 0 we will know that $g(x)$ is irreducible, but we won't know which polynomial it is exactly, so this approach may fail. We could also simply test whether $f(x) \equiv(x-5)^{3}(\bmod 7)$, but again, if this is not the case, we will know that $g(x)$ is irreducible, but not who it is.
So the safe way is to divide $f(x)$ by $(x-5)$. We find that $g(x)=x^{2}+2 x+3$, and $x=5$ is not a root of it, so $g(x)$ must be irreducible, and so the complete factorization is

$$
f(x) \equiv(x-5)\left(x^{2}+2 x+3\right) \quad(\bmod 7) .
$$

Remark 1: it is true that if $x=a$ is a root of $f(x)$, then $f(x)$ is divisible by $(x-a)^{2}$ iff. $x=a$ is also a root of the derivative $f^{\prime}(x)$, but we did not see it in class (not enough time). In this exercise, this fact makes the computations much easier for $p=3$ and $p=5$.

Remark 2: If $f(x)$ were reducible in $\mathbb{Z}[x]$, then its factorization in $\mathbb{Z}[x]$ would survive mod p for every p. Therefore, the fact that there exists a p (namely, $p=2$) such that $f(x)$ is irreducible mod p proves that $f(x)$ is irreducible over \mathbb{Z}.

Exercise 3.2: (20 pts)

Find an integer x such that $x \equiv 12(\bmod 7)$ and $x \equiv 7(\bmod 12)$.

Solution 3.2:

This is Chinese remainders: as 12 and 7 are coprime, we have a $1: 1$ correspondence

$$
\mathbb{Z} / 84 \mathbb{Z} \longleftrightarrow \mathbb{Z} / 7 \mathbb{Z} \times \mathbb{Z} / 12 \mathbb{Z}
$$

and we are looking for a pre-image of $(12 \bmod 7,7 \bmod 12)$ under this correspondence.

Let us start by finding u and v such that $7 u+12 v=1$. Either we spot them rightaway, or we use the Euclidian algorithm:

$$
\begin{aligned}
12 & =7+5 \\
7 & =5+2 \\
5 & =2 \times 2+1
\end{aligned}
$$

whence
$1=5-2 \times 2=5-2 \times(7-5)=3 \times 5-2 \times 7=3(12-7)-2 \times 7=3 \times 12-5 \times 7$.
So, under the correspondence $(\star), 3 \times 12=36$ is a preimage of $(1 \bmod 7,0 \bmod 12)$, and $-5 \times 7=-35$ is a preimage of $(0 \bmod 7,1 \bmod 12)$. As a result, since

$$
\begin{aligned}
(12 \bmod 7,7 \bmod 12) & =(5 \bmod 7,7 \bmod 12) \\
& =5 \times(1 \bmod 7,0 \bmod 12)+7 \times(0 \bmod 7,1 \bmod 12),
\end{aligned}
$$

a preimage for $(12 \bmod 7,7 \bmod 12)$ is $x=5 \times 36+7 \times-35=-65$.

Remark: Of course, any integer congruent to $-65(\bmod 84)$ works (for instance, 19). In fact, the Chinese remainder theorem tells us that the solutions are exactly the numbers that are congruent to $-65(\bmod 84)$; no more, no less.

Exercise 3.3: (10 pts)

Compute $\phi(261)$ and $\phi(6000)$.

Solution 3.3:

Thanks to the (complete) factorizations $261=3^{2} \times 29$ and $6000=2^{4} \times 3 \times 5^{3}$ and to the formula

$$
\phi(n)=N \prod_{\substack{p \mid n \\ p \text { prime }}}\left(1-\frac{1}{p}\right)
$$

we find that

$$
\phi(261)=261(1-1 / 3)(1-1 / 29)=3^{2} \times 29 \times \frac{2}{3} \times \frac{28}{29}=3 \times 2 \times 28=168
$$

and that

$$
\phi(6000)=2^{4} \times 3 \times 5^{3} \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5}=2^{3} \times 2 \times 5^{2} \times 4=1600
$$

Exercise 3.4: $\phi(n)$ is always even (30 pts)

Prove that $\phi(n)$ is even for all $n \geqslant 3$.

Solution 3.4:

Let $n=\prod_{i} p_{i}^{a_{i}}$ be the factorization of n, where the p_{i} are distinct primes. Since ϕ is multiplicative, we have

$$
\phi(n)=\prod_{i} \phi\left(p_{i}^{a_{i}}\right)=\prod_{i} p_{i}^{a_{i}-1}\left(p_{i}-1\right)
$$

If n is not a power of 2 , then one of the p_{i} is odd, so the term $\left(p_{i}-1\right)$ is even and $\phi(n)$ is even.

If $n=2^{a}$ is a power of 2 , then we have $a \geqslant 2$ since $n \geqslant 3$, and so $\phi(n)=2^{a-1}$ is also even.

