Math 261 - Exercise sheet 3

http://staff.aub.edu.lb/~nm116/teaching/2017/math261/index.html

Version: September 25, 2017

Answers are due for Monday 02 October, 11AM.

The use of calculators is allowed.

Exercise 3.1: Factorization of polynomials mod p (40 pts)

Let f(x) be the polynomial $x^3 - 3x^2 - 1$. Factor f(x)

- 1. $(10 \text{ pts}) \mod 2$,
- 2. $(10 \text{ pts}) \mod 3$,
- 3. $(10 \text{ pts}) \mod 5$,
- 4. $(10 \text{ pts}) \mod 7$.

Make sure that your factorizations are complete, i.e. prove that the factors that you find are irreducible.

Solution 3.1:

A polynomial of degree 3 is either irreducible, or splits as degree $2 \times \text{degree 1}$, or into 3 factors of degree 1 (not necessarily distinct). As a result, we can always factor it if we know what its roots are.

1. We have $f(x) \equiv x^3 + x^2 + 1 \pmod{2}$. Let us make a table of values in $\mathbb{Z}/2\mathbb{Z}$:

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline f(x) & 1 & 1 \end{array}$$

We see that f(x) has no root in $\mathbb{Z}/2\mathbb{Z}$. Therefore, it is irreducible, so the complete factorization is

$$f(x) \equiv x^3 + x + 1 \pmod{2}.$$

2. We have $f(x) \equiv x^3 - 1 \pmod{3}$. Table of values:

so the only root of f(x) in $\mathbb{Z}/3\mathbb{Z}$ is 1 (alternative reasoning: by Fermat's little theorem, we have $f(x) \equiv x - 1 \pmod{3}$ for all $x \in \mathbb{Z}$). So f(x) factors as $(x - 1)g(x) \mod 3$, where g(x) has degree 2. By Euclidian division over

 $\mathbb{Z}/3\mathbb{Z}$, we find that $g(x) = x^2 + x + 1$ (alternative proof: use the identity $x^3 - 1 = (x - 1)(x^2 + x + 1)$, which is valid even over \mathbb{Z} (as opposed to mod 3)). Since the only root of f(x) in $\mathbb{Z}/3\mathbb{Z}$ is x = 1, the only possible root of g(x) is also x = 1; and indeed g(1) = 0. So now we know that $x^3 - 1 = (x - 1)^2 h(x)$, where h(x) has degree 1. Since its only possible root is 1, and since the coefficient of x^3 in $x^3 - 1$ is 1, we must have h(x) = x - 1. As a conclusion, the complete factorization is

$$f(x) \equiv (x-1)^3 \pmod{3}.$$

We could also have seen this directly, by writing

$$x^{3} - 1 = x^{3} + (-1)^{3} \equiv (x - 1)^{3} \pmod{3}$$

since we are in characteristic 3.

3. Table of values of $f(x) \mod 5$:

so f(x) has two roots in $\mathbb{Z}/5\mathbb{Z}$, namely 2 and 4. As a result, we have a factorization of the form

$$f(x) \equiv (x-2)(x-4)g(x) \pmod{5},$$

where g(x) has degree 1. Since the only roots of f(x) are 2 and 4, and since the coefficient of x^3 in f(x) is 1, we have either g(x) = x - 2 or g(x) = x - 4. There are two ways to discover which: compute g(x) by dividing f(x) by $(x-2)(x-4) = x^2 - x - 2$ over $\mathbb{Z}/5\mathbb{Z}$, or divide f(x) by $(x-2)^2$; indeed, if we get remainder 0, we will know that $(x-2)^2$ divides f(x), so the missing factor g(x) must be x-2, else the missing factor is not x-2 so by elimination is must be x-4 (we could of course divide by $(x-4)^2$ instead of $(x-2)^2$ and apply the same reasoning).

Either way, we find that g(x) = x - 2, so that the complete factorization is

$$f(x) \equiv (x-2)^2(x-4) \pmod{5}.$$

4. Table of values of $f(x) \mod 7$:

so 5 is the only root of f(x) in $\mathbb{Z}/7\mathbb{Z}$.

As a result, we have

$$f(x) \equiv (x-5)g(x) \pmod{7}$$

with g(x) of degree 2, whose only possible root is 5. So either $g(x) = (x - 5)^2$ (since the coefficient of x^3 in f(x) is 1), or g(x) is irreducible.

To figure out which, we can simply compute g(x) by dividing f(x) by (x-5), and test whether 5 is a root of g(x). We could also divide f(x) by $(x-5)^2$, since if the remainder is 0 this will tell us that (x-5) | g(x); however if it is not 0 we will know that g(x) is irreducible, but we won't know which polynomial it is exactly, so this approach may fail. We could also simply test whether $f(x) \equiv (x-5)^3 \pmod{7}$, but again, if this is not the case, we will know that g(x) is irreducible, but not who it is.

So the safe way is to divide f(x) by (x-5). We find that $g(x) = x^2 + 2x + 3$, and x = 5 is not a root of it, so g(x) must be irreducible, and so the complete factorization is

$$f(x) \equiv (x-5)(x^2+2x+3) \pmod{7}$$
.

Remark 1: it is true that if x = a is a root of f(x), then f(x) is divisible by $(x-a)^2$ iff. x = a is also a root of the derivative f'(x), but we did not see it in class (not enough time). In this exercise, this fact makes the computations much easier for p = 3 and p = 5.

Remark 2: If f(x) were reducible in $\mathbb{Z}[x]$, then its factorization in $\mathbb{Z}[x]$ would survive mod p for every p. Therefore, the fact that there exists a p (namely, p = 2) such that f(x) is irreducible mod p proves that f(x) is irreducible over \mathbb{Z} .

Exercise 3.2: (20 pts)

Find an integer x such that $x \equiv 12 \pmod{7}$ and $x \equiv 7 \pmod{12}$.

Solution 3.2:

This is Chinese remainders: as 12 and 7 are coprime, we have a 1:1 correspondence

$$\mathbb{Z}/84\mathbb{Z} \longleftrightarrow \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z},\tag{(\star)}$$

and we are looking for a pre-image of $(12 \mod 7, 7 \mod 12)$ under this correspondence.

Let us start by finding u and v such that 7u + 12v = 1. Either we spot them rightaway, or we use the Euclidian algorithm:

$$12 = 7 + 5 7 = 5 + 2 5 = 2 \times 2 + 1$$

whence

$$1 = 5 - 2 \times 2 = 5 - 2 \times (7 - 5) = 3 \times 5 - 2 \times 7 = 3(12 - 7) - 2 \times 7 = 3 \times 12 - 5 \times 7.$$

So, under the correspondence (\star) , $3 \times 12 = 36$ is a preimage of $(1 \mod 7, 0 \mod 12)$, and $-5 \times 7 = -35$ is a preimage of $(0 \mod 7, 1 \mod 12)$. As a result, since

$$(12 \mod 7, 7 \mod 12) = (5 \mod 7, 7 \mod 12) = 5 \times (1 \mod 7, 0 \mod 12) + 7 \times (0 \mod 7, 1 \mod 12),$$

a preimage for $(12 \mod 7, 7 \mod 12)$ is $x = 5 \times 36 + 7 \times -35 = -65$.

Remark: Of course, any integer congruent to $-65 \pmod{84}$ works (for instance, 19). In fact, the Chinese remainder theorem tells us that the solutions are exactly the numbers that are congruent to $-65 \pmod{84}$; no more, no less.

Exercise 3.3: (10 pts)

Compute $\phi(261)$ and $\phi(6000)$.

Solution 3.3:

Thanks to the (complete) factorizations $261 = 3^2 \times 29$ and $6000 = 2^4 \times 3 \times 5^3$ and to the formula

$$\phi(n) = N \prod_{\substack{p|n\\p \text{ prime}}} \left(1 - \frac{1}{p}\right),$$

we find that

$$\phi(261) = 261(1 - 1/3)(1 - 1/29) = 3^2 \times 29 \times \frac{2}{3} \times \frac{28}{29} = 3 \times 2 \times 28 = 168$$

and that

$$\phi(6000) = 2^4 \times 3 \times 5^3 \times \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} = 2^3 \times 2 \times 5^2 \times 4 = 1600$$

Exercise 3.4: $\phi(n)$ is always even (30 pts)

Prove that $\phi(n)$ is even for all $n \ge 3$.

Solution 3.4:

Let $n = \prod_i p_i^{a_i}$ be the factorization of n, where the p_i are distinct primes. Since ϕ is multiplicative, we have

$$\phi(n) = \prod_{i} \phi(p_i^{a_i}) = \prod_{i} p_i^{a_i - 1}(p_i - 1).$$

If n is not a power of 2, then one of the p_i is odd, so the term $(p_i - 1)$ is even and $\phi(n)$ is even.

If $n = 2^a$ is a power of 2, then we have $a \ge 2$ since $n \ge 3$, and so $\phi(n) = 2^{a-1}$ is also even.