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Version: September 25, 2017

Answers are due for Monday 25 September, 11AM.

The use of calculators is allowed.

Exercise 2.1
Find all solutions x, y ∈ Z to the following equations:

1. 3x+ 5y = 2,

2. 18x+ 30y = 2016,

3. 18x+ 30y = 2017.

Solution 2.1
1. Since 3 and 5 are coprime, this equation has solutions. An obvious one is
x = −1, y = 1, and we know that we get all the other ones by adding a
multiple of 3 × 5 on one side, and compensating on the other side. So the
solutions are exactly the

x = −1 + 5t, y = 1− 3t (t ∈ Z).

2. This time 18 and 30 are not coprime, but their gcd, which is 6, divides 2016,
so we can get an equivalent equation by dividing everything by 6:

3x+ 5y = 336.

We spot a solution, for instance y = 60, x = 12; and the other solutions differ
by multiples of 3× 5. So finally the solutions are

x = 12 + 5t, y = 60− 3t (t ∈ Z).

3. This time, gcd(18, 30) = 6 does not divide 2017, so the equation has no solu-
tions.
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Exercise 2.2: The lcm
1. Let I and J be two ideals of Z. Apply the definition of an ideal to prove that

the intersection I ∩ J is also an ideal of Z.

2. Let a and b be positive integers. By the previous question, aZ∩ bZ is an ideal
of Z. Prove that this ideal is not the zero ideal. Why does this imply that
there exists a positive integer c such that aZ ∩ bZ = cZ ?

3. The integer c defined in the previous question is called the lowest common
multiple of a and b, and is denoted by lcm(a, b). Explain this name.

4. Let p1, · · · , pn be the primes that divide either a or b, so that we may write

a =
n∏

i=1

pui
i , b =

n∏
i=1

pvii

with non-negative integers u1, · · · , un and v1, · · · , vn. Express lcm(a, b) in
terms of the pi, the ui and the vi.

5. Deduce that gcd(a, b) lcm(a, b) = ab.

Remark: This means that it is possible to compute the lcm by computing the
gcd through the Euclidian algorithm. When a and b are large, this is much
more efficient than computing the factorization of a and b.

Solution 2.2:
1. • We know that every ideal of Z contains at least 0. So 0 ∈ I, and 0 ∈ J ,

so that 0 ∈ I ∩ J ; as a result, I ∩ J is not empty.

• Let x and y be elements of I ∩ J . Then since x and y are in I, x+ y is in
I; similarly, since x and y are in J , x+ y is also in J . So x+ y ∈ I ∩ J .

• Finally, let n ∈ Z, and let x ∈ I ∩ J . Then nx ∈ I, and nx ∈ J , so
nx ∈ I ∩ J .

This shows that I ∩ J is an ideal of Z.

2. We have ab ∈ aZ∩ bZ, so aZ∩ bZ 6= {0}. Since every ideal of Z is of the form
cZ for some c ∈ Z, and since aZ ∩ bZ is an ideal by the previous question,
there exists c ∈ Z such that aZ∩ bZ = cZ. But since ab ∈ aZ∩ bZ, we cannot
have c = 0, and since cZ = (−c)Z, we may assume that c > 0.

3. Clearly, c is the smallest positive element of the ideal cZ. But cZ = aZ ∩ bZ
is the set of integers that are both a multiple of a and of b. The number c is
thus the smallest such common multiple, whence this name.

4. The formula aZ ∩ bZ = cZ says that the common multiples of a and b are
precisely the multiples of c. Now ab =

∏n
i=1 p

ui+vi
i is such a common multiple,

so c divides it; therefore c =
∏n

i=1 p
wi
i for some integers wi 6 ui + vi.

In order for c to be a multiple both of a and b, we need wi to be both > ui
and > vi for each i. Then c will be the smallest common multiple precisely
when wi = max(ui, vi), so that

c =
n∏

i=1

p
max(ui,vi)
i .
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5. Recall that gcd(a, b) =
∏n

i=1 p
min(ui,vi)
i . Now, min(u, v) + max(u, v) = u+ v for

all u and v, so that

gcd(a, b) lcm(a, b) =
n∏

i=1

p
min(ui,vi)+max(ui,vi)
i =

n∏
i=1

pui+vi
i = ab.

Exercise 2.3
1. Use the Euclidian algorithm to determine if 47 is invertible mod 111, and to

find its inverse if it is.

2. Solve the equation 47x ≡ 5 (mod 111) in Z/111Z.

Solution 2.3
1. We know that 47 is invertible mod 111 if and only if 47 and 111 are coprime.

If they are, we need to look for u and v ∈ Z such that 47u+ 111v = 1; indeed,
u will then be an inverse of 47 (mod 111). To find u and v, we either spot
them directly1, or we use the Euclidian algorithm. This algorithm will also
tell us if the gcd of 47 and 111 is not 1, so let’s apply it:

111 = 2× 47 + 17

47 = 2× 17 + 13

17 = 13 + 4

13 = 3× 4 + 1

So the gcd is 1, so 47 is invertible mod 111. To find it, we write

1 = 13− 3× 4

= 13− 3(17− 13) = 4× 13− 3× 17

= 4(47− 2× 17)− 3× 17 = 4× 47− 11× 17

= 4× 47− 11× (111− 2× 47) = 26× 47− 11× 111,

whence 26 mod 111 is the inverse of 47 mod 111.

2. Since 47 is invertible mod 111, the only solution is

x = 5× 47−1 = 5× 26 = 130 ≡ 19 (mod 111).

1It can happen sometimes, but here there are no obvious candidates
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Exercise 2.4: An unsolvable diophantine equation
Prove that the equation x3 + y3 + z3 = 31 has no solution with x, y, z ∈ Z.

Hint: try solving the equation mod 9.

Solution 2.4:
Let us make a table of the cubes in Z/9Z:

x −4 −3 −2 −1 0 1 2 3 4
x3 −1 0 1 −1 0 1 −1 0 1

So the only cubes in Z/9Z are −1,0 and 1. As a result, a sum of 3 cubes can
be −3,−2,−1, 0, 1, 2 or 3 (mod 9), but it can never be 4 nor −4. Since 31 ≡ 4
(mod 9), the equation x3 + y3 + z3 = 31 has no solution in Z/9Z; therefore, it has
no solution in Z either.

Exercise 2.5: Primes mod 6
1. Let p be a prime number which is neither 2 nor 3. Prove that either p ≡ 1

(mod 6) or p ≡ −1 (mod 6).

2. Prove that there are infinitely many primes p such that p ≡ −1 (mod 6).

Hint: Suppose on the contrary that there are finitely many, say p1, · · · , pk. Let
N = 6p1 · · · pk − 1, and consider a prime divisor of N .

3. Why does the same proof fail to show that there are infinitely may primes p
such that p ≡ 1 (mod 6)?

4. Dirichlet’s theorem on primes in arithmetic progressions, which is way beyond
the scope of this course, states that for all coprime positive integers a and
b, there are infinitely many primes p such that p ≡ a (mod b); in particular,
there are in fact infinitely many primes p such that p ≡ 1 (mod 6). Why,
in the statement of this theorem, is it necessary to assume that a and b are
coprime ?

Solution 2.5:
1. If p is netiher 2 nor 3, then p - 6, so p and 6 are coprime. But the only

invertibles in Z/6Z are ±1 (either see it by inspection of all 6 elements, or use
the fact that φ(6) = 2), so we must have p ≡ ±1 (mod 6).

2. Suppose that p1, · · · , pk are the only such primes, and let N = 6p1 · · · pk − 1.
Clearly, neither 2 nor 3 divide N (since N ≡ −1 mod 6), so the primes dividing
N are all ≡ ±1 (mod 6) by the previous question. If they were all ≡ +1
(mod 6), then N , their product, would also be ≡ +1 (mod 6), which is not
the case. So at least one of them, say p, is ≡ −1 (mod 6). But this p cannot
be one of p1, · · · , pk, else we would have p | (6p1 · · · pk −N) = 1. We therefore
have reached a contradiction.

3. We could suppose by contradiction that p1, · · · , pk are the only primes ≡ 1
(mod 6), and consider a prime divisor of N = 6p1 · · · pk−1 (or N = 6p1 · · · pk+
1). Such a prime could not be any of the pi for the same reason as above, but
there is no reason why it would have to be ≡ 1 (mod 6); indeed, nothing
prevents the divisors of N from being all ≡ −1 (mod 6). So we are stuck.
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4. If p ≡ a (mod b), then p = bx + a for some x ∈ Z, so gcd(a, b) | p; and
obviously, if gcd(a, b) > 1, this can only happen for at most one prime p
(exactly one if gcd(a, b) = p is itself prime, and none else).

The exercise below has been added for practice. not mandatory. It
is not mandatory, and not worth any points. The solution will be made
available with the solutions to the other exercises.

Exercise 2.6: Divisibility criteria
Let n ∈ N.

1. Prove that 3 | n iff. 3 divides the sum of digits of n.

2. Prove that 9 | n iff. 9 divides the sum of digits of n.

3. Find a similar criterion to test whether 11 | n.

Solution 2.6:
The key is the following observation: if n0, n1, n2, · · · are the digits of n from right
to left, so that

n = n0 + 10n1 + 100n2 + · · · =
∑

ni10i,

and since 10 ≡ 1 (mod 9), we have

n =
∑

ni10i ≡
∑

ni1
i =

∑
ni (mod 9);

in other words, n is congruent to the sum of its digits (mod 9). In particular, this
congruence also holds mod 3 since 3 | 9.

So we have

9 | n⇐⇒ n ≡ 0 (mod 9)⇐⇒
∑

ni ≡ 0 (mod 9)⇐⇒ 9 |
∑

ni

and

3 | n⇐⇒ n ≡ 0 (mod 3)⇐⇒
∑

ni ≡ 0 (mod 3)⇐⇒ 3 |
∑

ni.

For divisibility by 11, we notice that 10 ≡ −1 (mod 11), so that

n =
∑

ni10i ≡
∑

ni(−1)i = n0 − n1 + n2 − n3 + · · · (mod 11).

As a result, 11|n if and only if the expression

n0 − n1 + n2 − n3 + · · · ,

which is called the alternate sum of digits of n, is divisible by 11.
Examples:

• For n = 261, we have 2 + 6 + 1 = 9, so 9 | 261.

• For n = 1452, we have 2− 5 + 4− 1 = 0, so 11 | 1452.

• We also see that 11 | 261 and that 3 | 1452 but 9 - 1452.
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