
Math 261 — Exercise sheet 1
http://staff.aub.edu.lb/~nm116/teaching/2017/math261/index.html

Version: September 18, 2017

Answers are due for Monday 18 September, 11AM.

The use of calculators is allowed.

Exercise 1.1
Use Euclid’s algorithm to prove that 2017 and 261 are coprime, and to find integers
u and v such that 2017u+ 261v = 1.

Solution 1.1
To compute the gcd, Euclid’s algorithm goes as follows:

2 0 1 7
1 9 0

2 6 1
7

2 6 1
7 1

1 9 0
1

1 9 0
4 8

7 1
2

7 1
2 3

4 8
1

4 8
2

2 3
2

2 3
0 3

1

2
1 1

2
0

1
2

The gcd is the last nonzero remainder, which is 1 in this case. This means that 2017
and 261 are coprime.
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In order to find u and v such that 2017u + 261v = 1, we first rewrite the above
divisions in a way that isolates the remainder (in bold) on one side:

190 = 2017− 7× 261

71 = 261− 190

48 = 190− 2× 71

23 = 71− 48

2 = 48− 2× 23

1 = 23− 11× 2

Then we use these equations to express 1 (the gcd) as a combination of the terms
of each division from bottom up:

1 = 23− 11× 2

= 23− 11× (48− 2× 23) = (1 + 11× 2)× 23− 2× 48 = 23× 23− 11× 48

= 23× (71− 48)− 11× 48 = 23× 71 + (−23− 11)× 48 = 23× 71− 34× 48

= 23× 71− 34× (190− 2× 71) = (23 + 34× 2)× 71− 34× 190 = 91× 71− 34× 190

= 91× (261− 190)− 34× 190 = 91× 261 + (−91− 34)× 190 = 91× 261− 125× 190

= 91× 261− 125× (2017− 7× 261) = 966× 261− 125× 2017.

So we can take u = −125, v = 966.

Exercise 1.2
1. Factor 261 into primes. Make sure to prove that you factorization is complete,

i.e. that the factors you find are prime.

2. Deduce the number of divisors of 261, and the sum of these divisors.

3. Do the same computations with 6000 instead of 261.

Solution 1.2
1. Since 2 + 6 + 1 = 9, 261 is divisible by 9. In fact, 261 + 9 = 270 = 30× 9, so

261 = 29× 9.

Now, of course 9 = 32 and 3 is prime; besides, if 29 were not prime, then it
would be divisible by a prime 6 5 since

√
29 <

√
36 = 6. But neither 2 nor 3

nor 5 divide 29, so 29 is prime.

So finally the prime factorization of 261 is

261 = 32 × 29.

2. From the formulas σ0 (
∏
paii ) =

∏
(1 + ai) and σ1 (

∏
paii ) =

∏ p
ai+1
i −1
pi−1 , we find

that
σ0(261) = (1 + 2)× (1 + 1) = 6,

and that

σ1(261) =
33 − 1

3− 1
× 292 − 1

29− 1
= 13× 30 = 390.
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3. We have 6000 = 6× 1000 = 2× 3× 103 = 2× 3× (2× 5)3 = 24 × 3× 53, so

σ0(6000) = (1 + 4)× (1 + 1)× (1 + 3) = 40

and

σ1(6000) =
25 − 1

2− 1
× 32 − 1

3− 1
× 54 − 1

5− 1
= 31× 4× 156 = 19344.

Exercise 1.3
Let a, b and c be integers. Suppose that a and b are coprime, and that a and c are
coprime. Prove that a and bc are coprime.

Solution 1.3
Suppose that d ∈ N is such that d | a and d | bc. Since d | a, d aqnd b are coprime.
Indeed, a divisor of d is also a divisor of a, so a common divisor of d and b is a
common divisor of a and b, which can only be ±1 since a and b are coprime. We
can now conclude by Euclid’s lemma: since d | bc and d is coprime to b, we must
have d | c. So d is a common divisor of a and c; since a and c are coprime, d can
only be ±1. So the only common divisors of a and bc are ±1.

Here is an alternative, less obvious proof using Bézout: since a and b are coprime,
there are u and v ∈ Z such that au+ bv = 1. Similarly, there are u′andv′ ∈ Z such
that au′ + cv′ = 1. By multiplying these identities, we get

1 = (au+ bv)(au′ + cv′) = a(uau′ + ucv′ + bvu′) + bc(vv′).

This last identity has the form 1 = ax + (bc)y with x, y ∈ Z, which proves that a
and bc are coprime.

Exercise 1.4: Fermat numbers
Let n ∈ N, and let N = 2n + 1. Prove that if N is prime, then n must be a power
of 2.

Hint: use the identity xm + 1 = (x + 1)(xm−1 − xm−2 + · · · − x + 1), which is
valid for all odd m ∈ N.

Solution 1.4:
Suppose on the contrary that n is not a power of 2. Then n is divisible by at least
one odd prime. Let p be such a prime, and write n = pq with q ∈ N. We thus have

N = 2n + 1 = 2pq + 1 = (2q)p + 1 = (2q + 1)(2q(p−1) − 2q(p−2) + · · · − 2q + 1)

according to the hint, since p is odd.
In order to conclude that N is composite, it is therefore enough to prove that

none of these two factors is ±1. But clearly 2q + 1 > 1, and if we had 2q(p−1) −
2q(p−2) + · · · − 2q + 1 = ±1, then we would have 2pq + 1 = ±(2q + 1), which is clearly
impossible since p > 3. We have thus found a non-trivial factorization of N , so N
is composite.

Remark: The Fermat numbers are the Fn = 22n+1, n ∈ N. They are named after
the French mathematician Pierre de Fermat, who noticed that F0, F1, F2, F3 and F4
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are all prime, and conjectured in 1650 that Fn is prime for all n ∈ N. However, this
turned out to be wrong: in 1732, the Swiss mathematician Leonhard Euler proved
that F5 = 641× 6700417 is not prime. To this day, no other prime Fermat number
has been found; in fact it is unknown if there is any ! This is because Fn grows very
quickly with n, which makes it very difficult to test whether Fn is prime, even with
modern computers.

Exercise 1.5:
√
n is either an integer or irrational

Let n be a positive integer which is not a square, so that
√
n is not an integer.

The goal of this exercise is to prove that
√
n is irrational, i.e. not of the form a

b

where a and b are integers.

1. Prove that there exists at least one prime p such that the p-adic valuation
vp(n) is odd.

2. Suppose on the contrary that
√
n = a

b
with a, b ∈ N; this may be rewritten as

a2 = nb2. Examine the p-adic valuations of both sides of this equation, and
derive a contradiction.

Solution 1.5:
1. Write the factorization of n as

∏
paii , where ai = vpi(n). If the ai were all

even, then the ai/2 would all be integers, and so we would have n = m2 with

m =
∏
p
ai/2
i , contradicting our hypothesis that n is not a square. So at least

one of the ai is odd, and we can take p to be the corresponding pi.

2. On the one hand, vp(a
2) = 2vp(a) is even; on the other hand, vp(nb

2) =
vp(n) + vp(b

2) = vp(n) + 2vp(b) is odd, since we have chosen p so that vp(n)
is odd. So the p-adic valuation of the integer a2 = nb2 is both even and odd,
which is absurd.

The exercise below is not mandatory. It is not worth any points, and
it is also more difficult than the previous ones. I highly recommend that
you try to solve it for practice. The solution will be made available with
the solutions to the other exercises.

Exercise 1.6: Perfect numbers
A positive integer n is said to be perfect if it agrees with the sum of all of its divisors
other than itself; in other words, if σ1(n) = 2n. For instance, 6 is a perfect number,
because its divisors other than itself are 1, 2 and 3, and 1 + 2 + 3 = 6.

1. Let a be a positive integer, and let n = 2a(2a+1 − 1). Prove that if 2a+1 − 1 is
prime, then n is perfect.

We now want to prove that all even perfect numbers are of this form.

2. Let n be an even number. Why may we find integers a and b such that n = 2ab
and b is odd ?
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3. In this question and in the following ones, we suppose that n is an even perfect
number. Prove that (2a+1 − 1) | b.

4. Let thus c ∈ N be such that b = (2a+1 − 1)c. Prove that σ1(b) = b+ c.

5. Deduce that c = 1.

6. Conclude that 2a+1 − 1 is prime.

7. Find two even perfect numbers (apart from 6).

Solution 1.6:
1. The relation 2 × 2a + (−1) × (2a+1 − 1) = 1 proves that 2a and 2a+1 − 1 are

coprime, so
σ1
(
2a(2a+1 − 1)

)
= σ1(2

a)σ1(2
a+1 − 1)

since σ1 is a multiplicative function.

Now, we have σ1(2
a) = 2a+1−1

2−1 = 2a+1 − 1. Besides, for every prime p ∈ N we
obviously have σ1(p) = 1 + p, so if 2a+1− 1 is prime, then σ1(2

a+1− 1) = 2a+1,
which implies that

σ1(n) = (2a+1 − 1)2a+1 = 2n,

which means that n is perfect.

2. Let n =
∏r

i=1 p
ai
i be the factorization of n. Since n is even, one of the pi, say

p1 is equal to 2, and it exponent a1 is > 1. We can thus take a = a1 and
b =

∏r
i=2 p

ai
i ; indeed, since the pi are prime and 6= 2 for i > 2, they are odd,

so b, as a product of odd numbers, is odd.

Alternative proof: since 2 is prime and does not divide any of the pi for i > 2,
it does not divide b by Euclid’s lemma.

3. Since b is odd, 2a and b are coprime, so by multiplicativity of σ1 we get

σ1(n) = σ1(2
a)σ1(b) = (2a+1 − 1)σ1(b).

But if n is perfect, then σ1(n) = 2n, so we find that (2a+1 − 1) | 2n. Next,
(2a+1 − 1) is clearly odd, so it is coprime to 2; by Euclid’s lemma, we must
have (2a+1 − 1) | n.

4. We have
2a+1b = 2n = σ1(n) = (2a+1 − 1)σ1(b),

so

σ1(b) =
2a+1b

2a+1 − 1
=

2a+1(2a+1 − 1)c

2a+1 − 1
= 2a+1c = (2a+1 − 1)c+ c = b+ c.

5. If c > 1, then 1, c, and b are three distinct divisors of b, so that

1 + c+ b 6 σ1(b) = b+ c,

which is impossible. So necessarily c = 1.
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6. From c = 1, we deduce that b = (2a+1 − 1)c = 2a+1 − 1, and that σ1(b) =
b + c = b + 1. Now, clearly 1 and b are divisors of b, and they are disctinct
since a > 1. If b had other divisors, then we would have σ1(b) > 1 + b, which
is not the case. So the only divisors of b are 1 and b itself, which means that
b is prime.

7. According to the previous questions, we need to look for integers a ∈ N such
that 2a+1 − 1 is prime; and then n = 2a(2a+1 − 1) will be a perfect number.
We see that a = 1 works, but it corresponds to n = 6, so we need to try larger
values of a.

For a = 2, we have 2a+1 − 1 = 7, which is prime; so n = 2a × 7 = 28 is a
perfect number.

For a = 3, we have 2a+1 − 1 = 15 = 3 × 5, which is composite; so we keep
looking.

For a = 4, we have 2a+1 − 1 = 31, which is prime; so n = 2a × 31 = 496 is
another perfect number.

Remarks: Prime numbers of the form 2a − 1 are called Mersenne primes after
Marin Mersenne (French, 17th century). Not all numbers of the form 2a − 1 are
prime though; in fact, it is not very difficult to show that if 2a − 1, then a is also
prime. However this condition is not sufficient, as the counter-example 211 − 1 =
23× 89 shows. In fact, as of today, only 49 primes a such that 2a − 1 is prime are
known. As a result, only 49 Mersenne primes, and so only 49 even perfect numbers,
are known. It is conjectured that there exist infinitely many Mersenne primes, and
so infinitely many even perfect numbers, but this has never been proved. As for odd
perfect numbers, if is unknown if any exist.
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