Math 261 - Final exam

December 13, 2017
The use of calculators, notes, and books is NOT allowed.

Exercise 1: Since today is the 13 th... (10 pts)

Factor $1+3 i$ into irreducibles in $\mathbb{Z}[i]$.
Make sure to justify that your factorization is complete.

Exercise 2: Primes of the form $x^{2}+4 y^{2}$ (28 pts)

Let $p \in \mathbb{N}$ be a prime. The goal of this exercise is to give two proofs of the following statement:
p is of the form $x^{2}+4 y^{2}$ with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1(\bmod 4) .(\star)$
Suggestion: In some of the questions below, you may find it easier to treat the cases $p \neq 2$ and $p=2$ separately.

1. (10 pts) Find all primitive reduced quadratic forms of discriminant -16 .
2. (10 pts) Deduce a proof of (\star) using the theory of quadratic forms.
3. (8 pts) Use the theorem on the sum of 2 squares to find another proof of (\star). Hint: $4 y^{2}=(2 y)^{2}$.

Exercise 3: A Pell-Fermat equation (18 pts)

1. (10 pts) Compute the continued fraction of $\sqrt{37}$.

This means you should somehow find a formula for all the coefficients of the continued fraction expansion, not just finitely many of them.
2. (8 pts) Use the previous question to find the fundamental solution to the equation $x^{2}-37 y^{2}=1$.

Please turn over

Exercise 4: Carmichael numbers (44 pts)

1. (8 pts) State Fermat's little theorem, and explain why it implies that if $p \in \mathbb{N}$ is prime, then $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}$.

A Carmichael number is an integer $n \geqslant 2$ which is not prime, but nonetheless satisfies $a^{n} \equiv a(\bmod n)$ for all $a \in \mathbb{Z}$. Note that this can also be written $n \mid\left(a^{n}-a\right)$ for all $a \in \mathbb{Z}$.
2. (6 pts) Let $n \geqslant 2$ be a Carmichael number, and let $p \in \mathbb{N}$ be a prime dividing n. Prove that $p^{2} \nmid n$.
Hint: Apply the definition of a Carmichael number to a particular value of a.
3. Let $n \geqslant 2$ be a Carmichael number. According to the previous question, we may write

$$
n=p_{1} p_{2} \cdots p_{r}
$$

where the p_{i} are distinct primes. Let p be one the the p_{i}.
(a) $(6 \mathrm{pts})$ Recall the definition of a primitive root $\bmod p$.
(b) $(9 \mathrm{pts})$ Prove that $(p-1) \mid(n-1)$.

Hint: Consider an $a \in \mathbb{Z}$ which is a primitive root $\bmod p$.
4. (9 pts) Conversely, prove that if an integer $m \in \mathbb{N}$ is of the form

$$
m=p_{1} p_{2} \cdots p_{r}
$$

where the p_{i} are distinct primes such that $\left(p_{i}-1\right) \mid(m-1)$ for all $i=1,2, \cdots, r$, then m is a Carmichael number.
Hint: Prove that $p_{i} \mid\left(a^{m}-a\right)$ for all $i=1, \cdots, r$ and all $a \in \mathbb{Z}$.
5. (6 pts) Let $n \geqslant 2$ be a Carmichael number. The goal of this question is to prove that n must have at least 3 distinct prime factors. Note that according to question 2 ., n cannot have only 1 prime factor.
Suppose that n has exactly 2 prime factors, so that we may write

$$
n=(x+1)(y+1)
$$

where $x, y \in \mathbb{N}$ are distinct integers such that $x+1$ and $y+1$ are both prime. Use question 3.(b) to prove that $x \mid y$, and show that this leads to a contradiction.

