Math 261 - Exam 1

October 4, 2017
The use of calculators, notes, and books is NOT allowed.

Exercise 1: Since today is October 4th... (10 pts)

1. $(4 \mathrm{pts})$ Compute the factorization of 104 into primes.
2. (6 pts) Deduce the number of divisors of 104 , the sum of these divisors, and the value of $\phi(104)$.

Exercise 2: Consecutive composites (16 pts)

1. (4 pts) Find 5 consecutive composite (i.e. not prime) integers $\leqslant 100$.
2. (12 pts) Find 2017 consecutive composite integers.

Hint: consider numbers of the form $n!+m$, where $n, m \in \mathbb{N}, m \leqslant n$, and $n!=1 \times 2 \times 3 \times \cdots \times n$.

Exercise 3: Making change (11 pts)

1. (8 pts) Find all integers $x, y \in \mathbb{Z}$ such that $20 x+50 y=10000$.
2. (3 pts) Deduce how many different ways there are to pay $\$ 10000$ using only banknotes of $\$ 20$ and $\$ 50$.

Exercise 4: Only 2 (20 pts)

Find all $n \in \mathbb{N}$ such that $\phi(n)=2$.

Exercise 5: A system of congruences (15 pts)

Find all $x \in \mathbb{Z}$ satisfying both

$$
\begin{cases}4 x \equiv 5 & (\bmod 7) \\ 5 x \equiv 3 & (\bmod 8)\end{cases}
$$

Exercise 6: Irreducible polynomials over $\mathbb{Z} / 2 \mathbb{Z}$ (28 pts)

1. (6 pts) Find all irreducible polynomials of degree 2 over $\mathbb{Z} / 2 \mathbb{Z}$.
2. (12 pts) Use the previous question and a Euclidian division to deduce that the polynomial $x^{4}+x+1$ is irreducible over $\mathbb{Z} / 2 \mathbb{Z}$.
3. (10 pts) Find all irreducible polynomials of degree 3 over $\mathbb{Z} / 2 \mathbb{Z}$.
