Math 261 - Exercise sheet 7

http://staff.aub.edu.lb/~nm116/teaching/2017/math261/index.html
Version: November 13, 2017

Answers are due for Monday 20 November, 11AM.
The use of calculators is allowed.

Exercise 7.1: Reduction (20 pts)

1. $(10 \mathrm{pts})$ Find a reduced quadratic form equivalent to the form $22 x^{2}-16 x y+3 y^{2}$.
2. (10 pts) Are the forms $2 x^{2}+x y+3 y^{2}$ and $2 x^{2}-x y+3 y^{2}$ equivalent?

Exercise 7.2: Class numbers (30 pts)

Compute the class number $h(D)$ for

1. (15 pts) $D=-116$,
2. (15 pts) $D=-47$.

Exercise 7.3: Primes of the form... (30 pts)

Let $p \in \mathbb{N}$ be prime.

1. (15 pts) Prove that p is of the form $x^{2}+3 y^{2}$ (with $x, y \in \mathbb{Z}$) if and only if $p=3$ or $p \equiv 1(\bmod 3)$.
2. (15 pts) Prove that p is of the form $x^{2}+x y+3 y^{2}$ (with $x, y \in \mathbb{Z}$) if and only if $p=11$ or $p \equiv 1,3,4,5$ or $9(\bmod 11)$.

Note: You are not allowed to use the theorem giving the list of D such that $h(D)=1$ in this exercise.

Exercise 7.4: An easy case of the class number 1 problem (20 pts)

1. (10 pts) Let $n \in \mathbb{N}$ be congruent to 1 or $2 \bmod 4$. Prove that $h(-4 n)=1$ if and only if $n<3$.
Hint: Imagine that you apply the method seen in class to compute $h(-4 n)$. What happens when $n \geqslant 3$?
2. (10 pts) Let $n \in \mathbb{N}$. Prove that if $h(-4 n+1)=1$, then $n=2$ or n is odd.
