Math 261 - Exercise sheet 3

http://staff.aub.edu.lb/~nm116/teaching/2017/math261/index.html
Version: September 25, 2017

Answers are due for Monday 02 October, 11AM.
The use of calculators is allowed.

Exercise 3.1: Factorization of polynomials mod p (40 pts)

Let $f(x)$ be the polynomial $x^{3}-3 x^{2}-1$. Factor $f(x)$

1. $(10 \mathrm{pts}) \bmod 2$,
2. (10 pts) mod 3 ,
3. (10 pts) mod 5 ,
4. $(10 \mathrm{pts}) \bmod 7$.

Make sure that your factorizations are complete, i.e. prove that the factors that you find are irreducible.

Exercise 3.2: (20 pts)

Find an integer x such that $x \equiv 12(\bmod 7)$ and $x \equiv 7(\bmod 12)$.

Exercise 3.3: (10 pts)

Compute $\phi(261)$ and $\phi(6000)$.
Exercise 3.4: $\phi(n)$ is always even ($\mathbf{3 0} \mathbf{~ p t s)}$
Prove that $\phi(n)$ is even for all $n \geqslant 3$.

