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Modular Galois representations

+o0
Let f =g+ Z anq" € Ni(N, ) be a newform of weight

n=2
k> 2.
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Modular Galois representations

—+00

Let f =q + Z anq" € Ni(N, ) be a newform of weight
n=2
k> 2.
Pick a prime [ of Kr lying over ¢ € N, and let I, be its residual
field.

Theorem (Deligne, Serre, Shimura, 1971)
There exists a unique continuous Galois representation

pry: Gal(@/Q) — GL(FY),

which is unramified outside ¢, and such that for all p 1 (N,
pr.i(Frob,) has characteristic polynomial

X? = a,X +(p)p* ! e F[X].
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Modular Galois representations
“+oo

Let f = q + Z anq" € Ni(N, ) be a newform of weight
n=2
k> 2.

Theorem (Deligne, Serre, Shimura, 1971)
There exists a unique continuous Galois representation

pry: Gal(Q/Q) — GLy(F),

which is unramified outside ¢N, and such that for all p 1 (N,
pr.i(Frob,) has characteristic polynomial

X2 — a,X +e(p)p* ! e F[X].

Goal: compute pr .

Nicolas Mascot Computing modular Galois representations



@ The Galois representation itself,
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@ The Galois representation itself,
o The field L = Q """ is a Galois number field, with
Galois group (almost) GL,(F;), whose ramification

behaviour is well-understood
~> Inverse Galois problem for GL, and PGL,, Gross's
problem, construction of very lightly ramified fields,
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@ The Galois representation itself,
o The field L = Q """ is a Galois number field, with
Galois group (almost) GL,(F;), whose ramification

behaviour is well-understood
~> Inverse Galois problem for GL, and PGL,, Gross's
problem, construction of very lightly ramified fields,

@ Fast computation of Fourier coefficients: computation of
a, mod [ = Tr pr(Frob,) in time (log p)><(P).
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Example: f = A mod [ =31

Theorem (M.)

@ The field cut out by pa 31 is the field generated by the
31°* roots of unity and by the roots of

X% — 21 x%3 4 118 x°2 + 527 x°! — 8587 x™ + 18383 x™ + 263035 x*° — 2005879 x°7 + 2416016 x* + 44283128 x> — 240474192 x>*
+84687350 x°° + 3638349286 x°2 — 12617823980 x°* — 10207265505 x° + 155175311479 x** — 196432825560 x** — 771645455342 x*7
+1482783472303 x*° + 2641351695834 x*° + 4650870173875 x** — 45480241563019 x*> — 54507672402738 x* + 501026042999912 x**
—496541492329624 x*° — 712343608491160 x*° + 5302741451178477 x** — 30548025690548139 x*7 + 34878663423629056 x*°
+288784532405339724 x*° — 874206875792459963 x** — 825384106177640249 x** + 6958723996166230970 x*
—4535708640900181166 x*' — 30017821501048367756 x™° + 56583574288118086410 x*° + 60507682456797414358 x*°
—278043951776326798765 x*7 + 87013091280485835964 x*° + 765685764124853689520 x*° — 1039521490897195574873 x**
—857609563094973739451 x** + 3508677503532089909529 x*? — 2261986657658172377618 x> — 5701736296366236274465 x*°
+13022850322612898456054 x'° — 641003473636730532862 x'° — 29939230256003209147601 x'7 + 25447129369769267020402 x'°
+36125137963345226955671 x'° — 55314588133331740131989 x** — 18703775559594899286772 x** + 43941206930666596631797 x*2
+17651378415866112635127 x'! + 10928239966752626190216 x'° — 81873964056071560411072 x° — 14246438965830190561265 x°
+128298548281018972743749 x — 50060167623901195766317 x° — 45764538130200829948820 x° + 18800719945150143916844 x*
—8179472634137717244072 x° + 62290435026572905701979 x> — 71710139962834196823306 x -+ 25842211492123062583556

(several CPU years).
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Example: f = A mod [ =31

Theorem (M.)

@ The field cut out by pa 31 is the field generated by the
31 roots of unity and by the roots of x% — 21 x% 4 ...,

@ We have the following values:

p pa31(Frob,) similar to | 7(p) mod 31
30 0
101000 4 453 [2 3] 19
1010% 4 1357 [ ol ] 13
1 13
4 1
101000 4 4351 [ 4] 8

(30s of CPU time per p).




The modular curve X;(N)

For N € N, let X;(N) be the modular curve 'y (N)\H°.
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The modular curve X;(N)

For N € N, let X;(N) be the modular curve 'y (N)\H°.

Credit: Helena Verrill
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The modular curve X;(N)

For N € N, let X;(N) be the modular curve 'y (N)\H°.

Credit: Helena Verrill

The (-torsion of its Jacobian J;(N) contains the mod ¢
representations attached to the newforms of weight kK = 2 and
level T'1(N).
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Weight lowering

Weight-lowering theorem

Suppose £ > 5 and (1 N, and let f € N, (T1(N)) be a
newform of weight 3 < k < /. There exists a newform
f, € No(T1(CN)) of weight 2 and a prime [, | £ of Ky, such that

f mod [ = f> mod [s.
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Weight lowering

Weight-lowering theorem

Suppose £ > 5 and (1 N, and let f € N, (T1(N)) be a
newform of weight 3 < k < /. There exists a newform
f, € No(T1(CN)) of weight 2 and a prime [, | £ of Ky, such that

f mod [ = f> mod [s.

Thus pr >~ pg, 1, shows up as

ny[ = ﬂ Ker (Tp’JI([N)[[] — ap(f) mod [) C Jl(gN)[g]

p
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Weight lowering

Thus pr( =~ pg, 1, shows up as

Vi =\ Ker (Tyluemg — a(f) mod 1) € A (¢N)[].

| t

Example
Take f = A € N1p(M1(1)). If £ > 13, there exists

fh e Nz(rl(g)), L, C I’(f2

such that
f, mod [, = A mod ¢ in Fy[[q]],

so that pa is afforded in Jy(¢)[4].

4
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The modular curve Xy(¢N)

£ The genus of Xi(¢N) get quickly large with /.
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The modular curve Xy(¢N)
£ The genus of Xi(¢N) get quickly large with /.

However, the condition
f mod [ = £, mod I,
implies that
Vx, e5(x) mod I, = x*"?c¢(x) mod L.

~ pr actually occurs in the Jacobian of the modular curve
Xy(¢N) of level

Fu(EN) = {[25] € To(¢N) | d € H}
where H = Ker(eg, mod ) < (Z/(NZ)*.
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The modular curve Xy(¢N)

£ The genus of Xi(¢N) get quickly large with /.

However, the condition
f mod [ = £, mod I,
implies that
Vx, e5(x) mod I, = x*"?c¢(x) mod L.

~ pr actually occurs in the Jacobian of the modular curve
Xy(¢N) of level

Fu(EN) = {[25] € To(¢N) | d € H}
where H = Ker(eg, mod ) < (Z/(NZ)*.

When H is large, the genus of this curve is much smaller than
that of X;(¢N).
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Khuri-Makdisi's algorithms

Let C be a “nice” curve of genus g.
Fix a divisor Dy on C of degree dy > 2g + 1, and compute a
basis of

V = H°(C,3Dy),
the elements being represented by multipoint evaluation, or
Taylor series (or both !)
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Khuri-Makdisi's algorithms

Let C be a “nice” curve of genus g.
Fix a divisor Dy on C of degree dy > 2g + 1, and compute a

basis of
V = H°(C,3Dy),

the elements being represented by multipoint evaluation, or
Taylor series (or both !)
A point x € Jac(C) = Pic’(C) «> the subspace

Wp, = V(-D,) = H°(C,3D, — D,) C V,
where D, > 0 is a divisor of degree dy such that

[Dx — DO] = X.
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Khuri-Makdisi's algorithms

Let C be a “nice” curve of genus g.
Fix a divisor Dy on C of degree dy > 2g + 1, and compute a

basis of
V = H°(C,3Dy),

the elements being represented by multipoint evaluation, or
Taylor series (or both !)
A point x € Jac(C) = Pic’(C) «> the subspace
Wp, = V(~D,) = H(C,3Dy — D) C V,
where D, > 0 is a divisor of degree dy such that
[Dy — Do) = x.

Arithmetic in Pic’(C) is then performed by linear algebra on
the subspaces of V.
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Khuri-Makdisi's algorithms on the modular curve

Let fy € So(TH(CN)) be defined over Q.

We take Dy = (fo) 4+ ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

> HO(Do) = S>(TH(EN)) & (Evz, Ers) © Ma(Tu(CN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c¢;.
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Khuri-Makdisi's algorithms on the modular curve

Let fy € So(TH(CN)) be defined over Q.

We take Dy = (fo) 4+ ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

> HO(Do) = S>(TH(EN)) & (Evz, Ers) © Ma(Tu(CN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c¢;.

We represent these forms by their g-expansion at all the cusps.
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Khuri-Makdisi's algorithms on the modular curve

Let fy € So(TH(CN)) be defined over Q.

We take Dy = (fo) 4+ ¢1 + ¢ + c3, where the ¢; are cusps such
that > ¢; is defined over Q.

> HO(Do) = S>(TH(EN)) & (Evz, Ers) © Ma(Tu(CN)),

where Ej ; is an Eisenstein series of weight 2 that vanishes at
all the cusps except c; and c¢;.

We represent these forms by their g-expansion at all the cusps.

We then compute V = H%(3Dy) C Me(I'H(¢N)) by
multiplication.
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An analytic point of view

In the elliptic curve case:

Abel-Jacobi 3
Algebraic model Pl Analytic model
y2=x3+ax+b C/(za®Zr)
(Weierstrass) Easy torsion
(prip?)
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An analytic point of view

In the elliptic curve case:

Abel-Jacobi 3
Algebraic model Pl Analytic model
y2=x3+ax+b C/(za®Zr)
(Weierstrass) Easy torsion
(prip?)

In the modular case, we work with divisors instead of points.

Abel-Jacobi g

Algebraic model Analytic model
Div® (X (¢N)) Jn(EN)(C) = C& /A

Easy to evaluate AR ~ _ _ 7 g Easy torsion

—

(28, Pi—g0] » X5 P) T

There is no g, so we must invert 7 “by hand".
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Goal: compute V¢ C Jy(¢N)[4].

@ Period lattice A of Xy(¢N)

High accuracy g-expansions and term-by-term integration of weight 2 cuspforms
~+ analytic model of Jy(¢N)

@ Approximation over C of the ¢-torsion
Locally invert Abel-Jacobi near O by Newton. Use periods to compute
2M¢-torsion divisor classes, m > 1. Use Khuri-Makdisi's algorithms to double

these classes m times.

© Evaluation of the /-torsion
Construct of a function o € Q(Jy(¢N)), evaluate it at the points of
Ve C Ju(EN)[4].

~» number field cut out by pr |

© Compute pr(Frob,)

thanks to the Dokchitsers’ algorithm.
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Evaluating the (-torsion

Proposition
Let o € Q(Jn(¢N)), and let
Fix)= [] (x-aD)).

De Vf’[
D#0

Then F(x) € Q[x].

If o is injective on V;, then Gal(Q/Q) permutes the roots of
F(x) as it permutes the points of V. In particular, F(x) is
then irreducible, and its decomposition field is

= Ker pr 1

L=0
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Classical choice of o € Q(Ju(¢N))

Let Ep be an effective divisor defined over Q and of degree g.
Pick £ € Q(Xu(¢N)), and extend it to Jy(¢N) by

a: Ju(EN) - C

ZP,-—E()] — Zg(P,-)'
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Classical choice of o € Q(Ju(¢N))

Let Ep be an effective divisor defined over Q and of degree g.
Pick £ € Q(Xu(¢N)), and extend it to Jy(¢N) by

a: Ju(EN) --» C
ZPI_E0] — > &P

The divisor of poles of « is

(M= D, To0®:

Q pole of &

so & must be chosen with degree as small as possible.
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Classical choice of o € Q(Ju(¢N))

Let Ep be an effective divisor defined over Q and of degree g.
Pick £ € Q(Xu(¢N)), and extend it to Jy(¢N) by

a: Ju(EN) --» C
ZPI_E0] — > &P

The divisor of poles of « is

(M= D, To0®:

Q pole of &

so & must be chosen with degree as small as possible.
Unfortunately,

Theorem (Abramovich, 1996)

>
deg€ < 8.
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Better choice of a € Q(Ju(¢N))

Let Ey be an effective divisor defined over Q and of degree g.
Points on Jy(¢N) can be written [E — Ey], E effective of
degree g. Fix an effective divisor B of degree 2g. Then

H°(B — E) = Coe.
We can thus define

a: JIy(IN)  --» C

B ¢e(P)

where P, Q € Xy(¢(N)(Q) are fixed.
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Better choice of a € Q(Ju(¢N))

H°(B — E) = CoE.
We can thus define
a: JIy(IN)  --» C

¢e(P)
[E — Eo] — ¢E(Q)

where P, Q € Xy(¢(N)(Q) are fixed.

The divisor of poles of « is the sum of only 2 translates of ©.
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Companion forms and tame ramification

pfL 1S
@ unramified outside /N,

@ (at most) tamely ramified at every p # ¢ s.t. p||N,
@ and usually wildly ramified at ¢,
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Companion forms and tame ramification

pfL 1S
@ unramified outside /N,

@ (at most) tamely ramified at every p # ¢ s.t. p||N,
@ and usually wildly ramified at ¢, except

o if f is supersingular mod [, i.e. ay(f) =0 mod [,
e or if f admits a companion form mod [, i.e.

Jdg € Spr1- k r1 s.t. Z nan(f)q" = Z nka,,(g)q
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Companion forms and tame ramification

pr1is
@ unramified outside /N,

@ (at most) tamely ramified at every p # ¢ s.t. p||N,
@ and usually wildly ramified at ¢, except

o if f is supersingular mod [, i.e. ay(f) =0 mod [,
e or if f admits a companion form mod [, i.e.

dg € Spy1- k Fl s.t. Zna,, f)q" ana,,(g)q

We can use these exceptional cases to discover number fields
with Galois group < GLy(IFy) and very small discriminant.
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Companion forms and tame ramification

[ZFEE
@ unramified outside /N,

@ (at most) tamely ramified at every p # ¢ s.t. p||N,
@ and usually wildly ramified at ¢, except

o if f is supersingular mod I, i.e. ay(f) =0 mod I,
e or if f admits a companion form mod [, i.e.

dg € Spy1- k I'l s.t. Z nan(f)q" = Z nka,,(g)q

We can use these exceptional cases to discover number fields
with Galois group < PGL(FF() and very small discriminant, by
considering the projective representation

Pf L

(: Gal(Q/Q) — GL(F;) — PGLy(F).
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Prediction of the discriminants

Let f € Ni(N,¢e) with N squarefree and coprime to ¢ and [ | £
of degree m. Let

TF: Gal(@/@) — PGL2(F[)

be the projective representation attached to f mod [, and
consider the Galois number field L that it cuts out, and let
K C L correspond to the stabiliser of a point of P*(F\). Let
dk, d; be their respective root discriminants.
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Prediction of the discriminants

Theorem (M.)

Assume that 7 acts transitively on P*(TF;). Let
M = cond(e mod [) and N' = [[{p # ¢ | pr, ramif. at p}, so
M | N"| N, and define r, = ord(ep mod [) for p | M. Then

1+1/i’" W N/ 1— 1/[
_ pa 1-1/rp _ 1-1/rp
dx = £ ( ) 11~ , d =t <M> 11~

p|M pIM
where
ged(k — 1,0 —1) m—1
= ]_ — =
p —1 T mg”
if f admits a companion form mod [, and
cd(k —1,0+1 if mis odd,
g=1-8 (2 )7 Q:{fm_l M
+1 1 IT m IS even

if f is supersingular mod [.
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Example 1

f=q+2¢°— 4>+ 0(q") € Ns(To(5)) is supersingular mod
[=13.

Im ¢ = PGLy(F13), and Xy(5 - 13) has genus g = 13.

K is the root field and L is the splitting field of

x4 — x13 — 26x1t + 39x10 4 104x° — 299x® — 195x” + 676x° + 481x° — 156x* — 39x3 + 65x> — 14x + 1.
We have dx = 43.002---, d, =47.816---

(cf. 8me? = 44.763- - -).

Conjecture (Roberts, M.)

L has the smallest discriminant among all the Galois number
fields with Galois group PGL,(Fy3).
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Example 2

f=q—6¢>—42¢> + 0(q*) € N3(Io(7)) admits a
companion mod [ = 13.

Im 7¢ | = PGLy(F13), and Xy(7 - 13) has genus g = 13 (again).

K is the root field and L is the splitting field of
x* — B52x7 + 91x5 + 273x5 — 364x* — 1456x3 — 455x2 + 1568x + 1495.
We have dx = 39.775---, d; = 63.271---.
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f = q+1728¢% — 59049¢° + O(q*) € N2 (To(3)) admits a
companion mod [ = 41.

Im 7¢ | = PGLy(F41), and this time Xy(3 - 41) has genus
g = 25.

Theorem (M.)
K is the root field and L is the splitting field of

x%2 — 13x* + 70x%0 — 200x*° + 395x38 — 1235x%7 + 8745x30 — 32673x%° + 41466x>* + 23047x3 + 117494x%2 — 1473749x%

+3432505x%° + 2534861x%° — 8121350x%® — 46053615x%7 + 55119882x%0 + 3771513x% + 926108685x%* + 222895020x> — 7775139729x%2
—13813042275x% + 57369301467x%° + 104177173023x'® — 235503859068x"® — 631349403945x"7 + 789220697001x' + 2415426085387x"°
—1368495524968x 4 — 7976148397256x3 -+ 2486419230610x'2 + 18312969605213x'1 — 3490664476058x'° — 33337073689065x°
+9634206834816x° + 38121337992357x” — 8827768624685x° — 35949940921273x° -+ 19912312531x* + 24698337243313x*
+7457815492250x2 — 8123634511724x — 4296658258197.

We have dx = 89.533--., d, =109.131---.
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Example 4

f =g+ 18v/—26q% — (54v/—26 + 675)q° + O(q*) € N13(3,(22))
is supersingular mod both primes above 37.

We have Im 7¢ = PSL,(F37), dx =51.483---, and
dp =52993---.

Unfortunately, the genus of Xy(3-37) is g = 385.
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Thank you !
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