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Abstract

Let ρ be a mod ` Galois representation. We show how to compute ρ
explicitly, given the characteristic polynomial of the image of the Frobenius
at one prime p and a curve C whose Jacobian contains ρ in its `-torsion. The
main ingredient is a method to p-adically lift torsion points on a Jacobian in
the framework of Makdisi’s algorithms.
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1 Introduction

1.1 Statement of the problem and notations

The notations set in this section will be used throughout the rest of this article.

Let ` ∈ N be a prime number, let d ∈ N, and let ρ : Gal(Q/Q) −→ GLd(F`) be
a mod ` Galois representation of degree d. We would like to compute ρ, that is to
say determine explicitly a polynomial F (x) ∈ Q[x] whose splitting field is the Galois
number field corresponding to the kernel of ρ, as well as an explicit indexation of
the roots of F (x) (in some large enough field where F (x) splits completely) by the
points of F`d \ {0} such that the Galois action on these roots corresponds to the
action of ρ on F`d \ {0}. Indeed, given such data and a prime p ∈ N at which ρ is
unramified, it is not very difficult to determine the image by ρ of the Frobenius at p
up to conjugacy in Im ρ, even for very large p, thanks to the technique presented
in [Dok13].

Suppose that we have an explicit model (for instance, equations) for a proper,
non-singular, geometrically connected curve C of genus g defined over Q, such that
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there exists a d-dimensional F`-subspace Tρ of the `-torsion J [`] of the Jacobian J
of C such that Tρ affords the Galois representation ρ. We wish to use the knowledge
of the curve C to compute ρ. For example, we showed in [Mas13] and [Mas18b]
how to compute the Galois representations attached to classical modular forms, by
taking C to be a modular curve.

In the case when C is a modular curve, we may use the Hecke action in order
to single Tρ out of J [`] (cf. [Mas13] for details), but we have no such tool at our
disposal when C is a general curve. Therefore, we instead assume that there is (at
least) one prime p ∈ N at which ρ is unramified such that we know explicitly the
characteristic polynomial χρ(x) ∈ F`[x] of the image by ρ of the Frobenius Φ at p.
We actually make the requirement that p is distinct from ` and that our model of C
has good reduction at p (which implies that ρ is unramified at p by Néron-Ogg-
Shafarevich). Furthermore, we suppose that the local L-factor Lp(x) ∈ Z[x] of C
at p is known explicitly, and that χρ(x), which necessarily divides Lp(x) mod `, is
actually coprime mod ` to its cofactor Lp(x)/χρ(x). This last requirement ensures
that the knowledge of χρ(x) determines the subspace Tρ of J [`] uniquely.

The goal of this article is to present an algorithm that, given a model for C,
the prime p ∈ N and the characteristic polynomial χρ(x), computes ρ in the above
sense.

Remark 1.1. Since we have an explicit model of C, the local L-factor Lp(x) may
in principle be recovered as the numerator of the Hasse-Weil zeta function of the
reduction mod p of C by point-counting techniques. Here we assume that we have
somehow been able to determine it. In practice, this often means that p cannot be
too large.

Remark 1.2. We do not exclude the case where Tρ = J [`], i.e. where the represen-
tation we want to compute is that afforded by the whole `-torsion of J . In this case,
the output of our algorithm may be called an `-division polynomial of C. Thanks
to [Dok13], we can then compute the local factor Lp′(x) mod ` in time polynomial
in log p′ for primes p′ ∈ N of good reduction. By Chinese remainders, we can thus
determine #C(Fp′n), at least in theory. This approach results in a point-counting
method whose complexity is as good as [AGS18], but which is more general since it
is not limited to hyperelliptic curves.

Remark 1.3. Although we focus on the case of representations of Gal(Q/Q) for the
simplicity of exposition, it is completely straightforward to generalize the techniques
presented in this article to the case of mod ` representations of Gal(k/k) where k
is a number field, by taking C to be defined over k, and replacing p by a finite
prime p of k whose residual characteristic is distinct from ` and at which C has
good reduction.

Remark 1.4. The case of a representation with values in GLd(Fλ), where Fλ is
a finite extension of F`, can also be treated by our methods (provided of course
that the curve C is known), since restriction of scalars and the flexibility of [Dok13]
allows us to treat it as a representation with values in a subgroup of GLd[Fλ:F`](F`).
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1.2 Outline

Our strategy to compute ρ may be summarized as follows:

1. Compute d points forming a basis of the image of Tρ in J(Fq)[`], where q = pa

with a ∈ N large enough to split ρ (i.e. large enough that the points of the
reduction of Tρ mod p are defined over Fq),

2. Fix an integer e ∈ N, and lift these points to approximations with accu-
racy O(pe) of `-torsion points in J(Qq), that is to say to points of J(Zq/pe),
where Qq denotes the unramified extension of Qp whose residue field is Fq
and Zq is the ring of integers of Qq,

3. Compute all the F`-linear combinations of these d points, thus obtaining a
model of Tρ over Zq/pe,

4. Evaluate a rational map α : J 99K A1 defined over Q at these `d points, and
form the monic polynomial F (x) whose roots are these values,

5. Check that these values are distinct, else take another map from J to A1 and
try again,

6. Identify F (x) as a polynomial with coefficients in Q, or, if this fails, start over
with a larger value of e.

Indeed, for each nonzero t ∈ Tρ, α(t) lies in the field of definition Q(t) of t, so
the splitting field of F (x) is a subfield of the field corresponding to the kernel of ρ,
and agrees with it with high probability since most elements of a number field are
primitive elements. More precisely, a sufficient condition for the Galois action on
the roots of F (x) to reflect faithfully that on the points of Tρ is that α be injective
on Tρ, which is what we check at step 5.

Remark 1.5. In step 2, we are justified in speaking of J(Zq/pe) thanks to our
assumption that C has good reduction at p.

Remark 1.6. Because of the identification performed at step 6, the output of this
algorithm is not guaranteed to be correct, and should be certified by methods such
as [Mas18a].

Throughout this algorithm, we use Kamal Khuri-Makdisi’s methods [KM04], [KM07]
to compute in J . We give a brief presentation of these techniques in section 2, in-
cluding a recipe to construct rational maps from J to A1 and comments on the
implementation over a p-adic field.

The core of this article is devoted to the presentation of a technique to lift
torsion points from Fq to Qq (up to some arbitrary p-adic accuracy) in Makdisi’s
framework. After differential calculus preliminaries in section 3, we show how to lift
a point from J(Fq) to J(Zq/pe) for any e ∈ N in section 4, and then how to ensure
that the lift of an `-torsion point over Fq remains `-torsion over Zq/pe in section 5.

Finally, we explain in detail how to use these tools to compute Galois represen-
tations in section 6, and we give explicit examples in section 7.
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Remark 1.7. As we will comment on in the next sections, in Makdisi’s method,
points on the Jacobian are represented by matrices of a certain size. The crucial
point is that most matrices of this given size do not represent any point on the Jaco-
bian; thus lifting a point from J(Fq) to J(Zq/pe) is a non-trivial process. In [Mas13],
we used Makdisi’s methods over C, and we noticed that the accuracy deteriorated
little-by-little after each operation in J , in that the matrix crept away from the
locus corresponding to actual points on the Jacobian. This is the reason that ini-
tially prompted us to look for a method to “fix” representations of points on J in
Makdisi’s method given with poor accuracy. We then realized that performing this
“fix” p-adically led to an algorithm to compute Galois representations. The methods
presented in this article ought to also be able to “fix” complex approximations of
points in Makidisi’s method, although we have not actually tried them this way.

2 Computing in the Jacobian

2.1 Review of Makdisi’s algorithms

We start by recalling how Makdisi’s algorithms work; indeed we will reuse some of
their ideas in this article. None of the material present in this subsection is original
work.

Remark 2.1. Makdisi’s algorithms are very flexible and can be implemented in
many different ways, cf. [KM04] and [Bru13] for more details. The version we give
here is the one that is best suited to our purpose. Connoisseurs will recognize the
medium model in representation B0.

2.1.1 Representation of spaces of functions on the curve

As in the previous section, we consider a nice algebraic curve C of genus g. However,
the ground field k need not be Q anymore, but could be any perfect field over which
one may perform linear algebra effectively. Given a divisor D on C, we will denote
the corresponding Riemann-Roch space by

L(D) = {f ∈ k(C)× | (f) +D > 0} ∪ {0}.

We begin by picking an effective divisor D0 defined over k on C, of degree d0 >
2g + 1, and we define

Vn = L(nD0)

for all n ∈ N. The space V2 will play a particular rôle, so we set

V = V2

for brevity.
Let nZ > 5d0 + 1 be an integer. We will assume that k is large enough that we

can fulfil the following condition:

There exists an effective divisor Z formed of nZ distinct points Pi in C(k)\suppD0.
(2.2)
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Remark 2.3. For efficiency reasons, we should take d0 as close to 2g+1 as possible
and nZ as close to 5d0 + 1 as possible (bearing in mind constraints such as those
described in remark 2.17 and subsection 2.2.5). We will therefore assume that d0 =
O(g) and that nZ = O(g) for complexity analyses.

All the computations performed by Makdisi’s algorithms take place in the space V5

(and so do the ones presented in the article). We represent an element v ∈ V5 by a
column vector in knZ containing its values v(Pi) at the nZ points Pi ∈ C(k). Since
such a function has degree at most 5d0, this representation is faithful, and defines
an embedding of V5 into knZ .

In this representation, addition and multiplication of functions is done point-wise,
which will simplify our task in the next sections. Given two column vectors c, c′ ∈
knZ , we denote by c� c′ their point-wise product, that is to say the column vector
whose i-th entry is cic

′
i for all i. Thus if c and c′ represent functions on C, c � c′

represents their product (provided that all these functions lie in V5).
We will work with subspaces of V5. Such a subspace S will be represented by a

matrix

M =

 s1(P1) · · · sdimS(P1)
...

...
s1(PnZ ) · · · sdimS(PnZ )


of size nZ × dimS whose i, j-entry is sj(Pi), where the sj ∈ S form a k-basis of S
and the Pi are as above. Thus the columns of M represent a basis of S in the above
sense. Since S has many k-bases, this representation is of course not unique. We
will call such a matrix a matrix representing S, or a matrix for S.

Given a column c ∈ knZ and a matrix M with nZ rows, we denote by c�M the
matrix whose column are the c�Mj, where the Mj are the columns of M . Thus if c
represents a function f and M represents a subspace S of V5, then c�M represents
the subspace fS = {fs, s ∈ S} (provided that this is still a subspace of V5).

Later on, we will frequently need to compute a matrixKS of size (nZ−dimS)×nZ
whose rows represent independent linear equations defining S as a subspace of knZ .
Such a matrix can be obtained simply as the transpose of the kernel of the transpose
of M , and will be referred to as an equation matrix for S.

Conversely, given a matrix A whose rows represent linear equations, we call a
matrix whose columns represent a basis of the space of solutions of these linear
equations a kernel matrix of A.

Remark 2.4. In this article, we will actually work with k = Fq or Qq, where q = pa

is a prime power, and we impose that the nZ points Pi ∈ C(k) remain distinct
mod p. The Hasse bounds show that this is always achievable, possibly at the
price of enlarging a, and also that q cannot be very small. We will also suppose
that matrices representing a subspace S of V5, as well as kernel (resp. equation)
matrices, have coefficients in the ring of integers Zq of Qq, and that their columns
(resp. rows) remain linearly independent when reduced mod p. We will show how
to preserve this condition throughout our computations, and more generally how
to perform linear algebra over Zq without loss of p-adic accuracy, in section 2.2.4
below.
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By Riemann-Roch, every point x ∈ J = Pic0(C) is of the form x = [D−D0] for
some (non-unique) effective divisor D of degree d0. Such a point will be represented
by a matrix WD for the d0-codimensional subspace L(2D0 −D) ( V of V . Thus x
is represented by an effective divisor D such that [D−D0] = x, itself represented by
the subspace L(2D0−D), itself represented by a matrix WD of size nZ × dW , where

dW = d0 + 1− g

is the dimension of such a subspace. Since deg(2D0−D) = d0 > 2g+1, the Riemann-
Roch space L(2D0−D) is base-point-free, so this representation is faithful. However,
it is obviously not unique.

In particular, the space V1 = L(D0) represents the origin of J , so we denote byW0

a matrix representing this space (thus W0 means WD for D = D0, not D = 0).
We suppose that we can compute an explicit basis of V1 = L(D0) = W0. This

presents various difficulties depending on what kind of model of C we have, cf. for
instance [Hes02]. Thanks to algorithm 1 introduced below, we can then compute
matrices representing Vn for any n ∈ N. We initialize Makdisi’s algorithms by
precomputing matrices W0, MV , and MV3 representing respectively V1, V = V2,
and V3, as well as equation matrices KV and KV3 for V and V3. Although all the
action will take place in V5, we do not need to compute a matrix (nor an equation
matrix) for V5.

Remark 2.5. The dissension between the notations MV , MV3 (matrices for L(2D0)
and L(3D0)) and WD (matrix for the subspace L(2D0−D) representing [D−D0] ∈
J) is meant as a reminder that MV and MV3 are “structure constants” describing
the curve C, whereas WD represents a (variable) point on J .

2.1.2 Arithmetic on divisors

Before we present Makdisi’s algorithms per se, we show how we can add and subtract
divisors at the level of Riemann-Roch spaces. Let us start with addition.

Input: Matrices MA and MB for the spaces L(A) and L(B), where A, B
are arbitrary divisors such that A,B,A+B 6 5D0

and degA, degB > d0.
Output: A matrix for the space L(A+B).

1 d← dimL(A) + dimL(B) + g − 1; // d = dimL(A+B)
2 S ← ∅;
3 repeat
4 s← #S;
5 for j ← 1 to d− s do
6 a← a random combination of columns of MA;
7 b← a random combination of columns of MB;
8 Append a� b to S;

9 end
10 S ← a basis of the subspace of knZ spanned by S;

11 until #S = d;
12 return the matrix whose columns are the elements of S;

Algorithm 1: DivAdd
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Proof. Makdisi proves in [KM04, lemma 2.2] that if A and B both have degree at
least 2g + 1, then the multiplication map

L(A)⊗ L(B) −→ L(A+B)

is surjective; in other words, the space L(A + B) is spanned by elements of the
form fAfB where fA ∈ L(A), fB ∈ L(B). The condition A, B, A + B 6 5D0

ensures that these three spaces are subspaces of V5, so that their elements are rep-
resented faithfully by their values at the points Pi. The dimension of L(A + B)
is computed at line 1 by Riemann-Roch; then, in each iteration of the for loop, a
(resp. b) represents a random element fA ∈ L(A) (resp. fB ∈ L(B)), so a � b rep-
resents an element fAfB ∈ L(A + B), and we keep forming such products until we
generate L(A+B).

Remark 2.6. If k is a very small finite field, it can be advantageous to execute the
for loop at line 5 a little more than d−#S times so as to ensure we get a generating
set of L(A+ B) with high probability (A detailed analysis of the situation is given
in [Bru13]). However, our assumption (2.2) implies that k cannot be too small, so
that in practice it is extremely rare that we need to execute the repeat...until loop
more than once even if we take just d products a� b.

Remark 2.7. If k is a p-adic field and if we follow the conventions set in remark 2.4,
the linear algebra for the extraction of a basis of the span of S at line 10 can be
performed mod p to save time.

We now show how to subtract divisors at the level of the Riemann-Roch spaces.
We begin with the case where the dimension of the result is known in advance, which
is frequently the case thanks to the Riemann-Roch theorem.

Input: Matrices MA and MB for the spaces L(A) and L(B) attached to
divisors A,B 6 5D0 such that A−B 6 3D0 and degB > d0, and
the dimension d of L(A−B).

Output: A matrix for the space L(A−B).
1 KA ← an equation matrix for L(A);
2 repeat
3 for j ← 1 to 2 do
4 bj ← a random combination of columns of MB;
5 Kj ← KA;
6 for i← 1 to nZ do
7 Multiply the i-th column of Kj by the i-th coordinate of bj;
8 end

9 end
10 K ← vertical stack of KV3 , K1, and K2;
11 S ← a kernel matrix for K;

12 until # of columns of S = d;
13 return S;

Algorithm 2: DivSub
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Proof. As in algorithm 1, the condition A,B,A − B 6 5D0 ensure that the ele-
ments of the corresponding Riemann-Roch spaces are faithfully represented by their
evaluation at Z.

Since degB > d0 > 2g, the space L(B) is base-point-free; in other words, the
inequality

inf
f∈L(B)

(f) > −B

is actually an equality. It follows that

L(A−B) = {v ∈ V5 | vL(B) ⊂ L(A)}.

Actually, we have L(A−B) = {v ∈ V3 | vL(B) ⊂ L(A)} since A−B 6 3D0.
Now, b1 and b2 represent random elements f1 and f2 of L(B), and the ma-

trix S computed at line 11 represents kerKV3 ∩ kerK1 ∩ kerK2. But the first
of these kernels represents precisely V3 by definition of KV3 , whereas the last two
represent {v ∈ knZ | v � bj ∈ L(A)} for j = 1, 2. Thus S represents the sub-
space L = {v ∈ V3 | vf1, vf2 ∈ L(A)} of V5.

If the inequality
inf
(
(f1), (f2)

)
> −B

is actually an equality, then L is exactly L(A − B) by the same logic as above.
Else, L is a strict super-space of L(A − B), but we can detect this by comparing
its dimension to the known dimension of L(A − B), so we simply try again with
another choice of b1 and b2.

Remark 2.8. As pointed out in section 3 of [KM07], the condition inf
(
(f1), (f2)

)
=

−B can be understood as the condition that two elements of an ideal of a Dedekind
domain generate that ideal. This explains why we must take at least two ele-
ments f1, f2 ∈ L(B). This condition will then be satisfied with high probability,
except if k is a very small finite field, in which case it can be a good idea to consider
more than two elements f1, f2 ∈ L(B) (cf. [Bru13] for a detailed analysis). Due to
assumption (2.2), k cannot be too small, so two elements are enough in practice.

In the case where dimL(A − B) is not known in advance, we can still com-
pute L(A − B) by taking bj ranging over the columns MB, which represent a ba-
sis (fj) of L(B) so that inf(fj) = −B. Of course, this leads to solving a larger linear
system, and is therefore slower, than with two random elements f1, f2 ∈ L(B).

This more difficult case is in particular needed in the following situation: given
matrices WD, WD′ representing points x = [D − D0], x′ = [D′ − D0] ∈ J , we
can test whether x = x′, that is to say whether D ∼ D′, since DivSub(WD,WD′)
represents L(D −D′) which has dimension 1 in this case, and 0 else. In particular,
we can test whether WD represents 0 ∈ J by taking WD′ = W0.

2.1.3 Arithmetic in the Jacobian

Thanks to these two basic operations, Makdisi manages to compute in the Jacobian
using only linear algebra operations over k. For instance, the following algorithm
computes the negative of the sum of two points of J . Since we have the representa-
tion W0 of 0 ∈ J , we can then perform additions and subtractions in J .
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Input: Matrices W1 and W2 for the spaces L(2D0 −D1) and L(2D0 −D2)
encoding the points x1 = [D1 −D0] and x2 = [D2 −D0] of J .

Output: A matrix for a space L(2D0 −D3) encoding x3 = [D3 −D0] ∈ J
such that x1 + x2 + x3 = 0.

1 W12 ← DivAdd(W1,W2) ; // L(4D0 −D1 −D2)
2 W ′

12 ← DivSub(W12,W0) ; // L(3D0 −D1 −D2)
3 c← a non-zero combination of columns of W ′

12 ; // Represents f
// where (f) = −3D0 +D1 +D2 +D3 for some D3 > 0 of degree d0

4 W123 ← c�MV ; // L(5D0 −D1 −D2 −D3)
5 W3 ← DivSub(W123,W

′
12) ; // L(2D0 −D3)

6 return W3;

Algorithm 3: Add-flip

Note that on both times that we call DivSub, the dimension of the result,
namely dW , is known in advance by Riemann-Roch.

Finally, although each point of J is represented by a subspace of V , itself viewed
as a subspace of knZ , clearly not every dW -dimensional subspace of knZ corresponds
to a point of J . In [KM04], Makdisi gives the following algorithm:

Input: A matrix W of size nZ × dW with linearly independent columns
representing a subspace of V .

Output: True if W represents a subspace of the form L(2D0 −D) for
some effective D of degree d0, False else.

1 w ← a non-zero combination of columns of W ;
2 W ′ ← DivSub(w �MV ,W );
3 n← number of columns of W ′;
4 return True if n = dW , False if n < dW ;

Algorithm 4: Membership test

Proof. The idea is to check whether the elements of the subspace S of V represented
by W have many common zeros. Thus the column vector w represents a non-zero
element f of this subspace, whose divisor is of the form (f) = −2D0+D+D′ where D
is the largest divisor such that W ⊂ L(2D0−D) and D′ is another effective divisor,
so that W ′ represents L(2D0 −D′). The larger the locus D of common zeros of S,
the smaller D′, so the larger dimW ′. See [KM04, theorem/algorithm 3.14] for more
details.

Loosely speaking, the goal of sections 3 and 4 will be to determine the differential
of the map W 7→ W ′, so as to be able to deform the representation of a p-adic point
of J by a matrix with entries mod pe into a representation by a matrix mod p2e.

Remark 2.9. Since Makdisi’s algorithms involve linear algebra in size O(g)×O(g),
their complexities are O(gω) operations in the ground field, where 2 6 ω < 3 is such
that two matrices of size n× n can be multiplied in O(nω) operations.

2.2 Extra operations

We now present complements of ours to Makdisi’s algorithms, some of which are
inspired by [Bru13].
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2.2.1 Fast exponentiation and add-flip chains

Algorithm 3 does not compute the sum of two points of J , but rather their “add-
flip”, that is to say the negative of that sum. Therefore the usual notion of addition
chain for fast exponentiation needs to be adapted.

Definition 2.10. Let m ∈ Z. An add-flip chain for m of length n ∈ N is a finite
sequence of triples of integers

(m0, i0, j0), (m1, i1, j1), · · · , (mn, in, jn)

such that m0 = 0, m1 = 1, mn = m, and for all 2 6 s 6 n, we have 0 6 is, js < s
and ms = −mis −mjs .

The value of i0, j0, i1, j1 does not matter and is left undefined.

Since we have the representation W0 of 0 ∈ J , we can perform any addition by
performing two consecutive add-flips. Therefore, for all m ∈ Z distinct form 0 and 1,
their exists an add-flip chain of length O(log |m|); and conversely an add-flip chain
for m must clearly have length at least O(log |m|).

Short add-flip chains for a given m ∈ Z can be found by putting m in non-
adjacent form in the sense of [CF+05, section 9.1.4]. This method has the advan-
tage of being extremely fast. Adapting the continued fraction method described
in [BBB94] results in a much slower algorithm that yields chains which are on aver-
age only a few percent shorter.

2.2.2 Pairings

Later in section 6, we will generate points of an F`-subspace Tρ ⊂ J [`] at random,
and we will need a tool to detect linear relations between them so as to know whether
we have obtained a generating set of Tρ yet. For this, we will use parings.

Let m ∈ N. The Weil pairing is defined as

em :
∧2 J(k)[m] −→ µm(k)

(x, y) 7−→ fx(Dy)

fy(Dx)
,

where Dx ∼ x and Dy ∼ y are divisors whose supports do not intersect, and where fx
and fy are functions of C such that (fx) = mDx and (fy) = mDy. It has the
disadvantage of being skew-symmetric, which means it is useless for our purpose
when the space Tρ is totally isotropic for example. Therefore, we prefer to use the
less-known Frey-Rück pairing [FR94]

{·, ·}m : J(k)[m]× J(k)/mJ(k) −→ k×/k×m

(x, y) 7−→ fx(Dy).

In the special case where k = Fq is a finite field containing µm, we can linearise it
by composing it with

k×/k×m −→ µm −→ Z/mZ
z 7−→ z(q−1)/m 7−→ logζ z

(q−1)/m

10



where ζ ∈ µm is a primitive m-th root of 1 and logζ denotes the corresponding
discrete logarithm. We will denote the corresponding version of the pairing by

[·, ·]m : J(Fq)[m]× J(Fq)/mJ(Fq) −→ Z/mZ,

the choice of ζ being implicit. This pairing is perfect, and allows us to construct
linear forms on J [m] simply as [·, y]m for any y ∈ J(Fq), and thus to detect linear
relations satisfied by a finite collection of points of J [m] if we can generate sufficiently
many elements y ∈ J(Fq)/mJ(Fq).

An implementation of the Frey-Rück pairing in Makdisi’s framework is described
in [Bru13]. We describe here our own implementation, which is simpler (for instance
it stays in V5 = L(5D0) whereas [Bru13] goes up to L(7D0)).

We start with the following auxiliary procedure, which computes the value of
a function at a divisor, and may thus be viewed as a generalization in Makdisi’s
framework of the concept of resultant:

Input: A column c representing a non-zero function f ∈ V3 and a
matrix WD representing L(2D0 −D), with degD = d0.

Output: f(D) if the supports of D and D0 do not intersect, else FAIL.
1 w1, · · · , wdW ← the columns of WD, where dW = dimV − d0 as before;
// Find supplement of L(2D0 −D) in V = L(2D0)

2 Choose columns s1, · · · , sd0 of MV such that s1, · · · , sd0 , w1, · · · , wdW are
linearly independent;

3 d′W ← 4d0 + 1− g ; // dimension of L(5D0 −D)
4 w′1, · · · , w′d′W ← columns of DivAdd(WD,MV3) ; // L(5D0 −D)

// Find supplement of L(5D0 −D) in V5 = L(5D0)
5 Choose columns v1, · · · , vd0 of MV and u1, · · · , ud0 of MV3 such that

t1, · · · , td0 , w′1, · · · , w′d′W are linearly independent, where ti ← ui � vi
for all i;
// Find relations

6 A← matrix with columns s1, · · · , sd0 , t1, · · · , td0 , w′1, · · · , w′d′W ;

7 K ← matrix whose columns form a basis of kerA;
8 Ks ← rows 1 to d0 of K;
9 Kt ← rows d0 + 1 to 2d0 of K;

10 M1 ← KtK
−1
s ;

11 ∆1 ← detM1;
12 if ∆1 = 0 then FAIL;

// Find relations

13 A← matrix with columns c� s1, · · · , c� sd0 , t1, · · · , td0 , w′1, · · · , w′d′W ;

14 K ← matrix whose columns form a basis of kerA;
15 Ks ← rows 1 to d0 of K;
16 Kt ← rows d0 + 1 to 2d0 of K;
17 Mf ← KtK

−1
s ;

18 ∆f ← detMf ;
19 return ∆f/∆1;

Algorithm 5: Evaluating a function at a divisor

11



Proof. View V5 = L(5D0) and all its subspaces as embedded into knZ as explained
in section 2, and define

LD = L(2D0 −D), L′D = L(5D0 −D)

for brevity.
We have V = L(2D0) = S ⊕ LD, where S is the subspace spanned by the si;

similarly V5 = L(5D0) = T⊕L′D where T is the subspace spanned by the ti = ui�vi.
By definition,

LD = {v ∈ V | v|D = 0},

so that OD ' V/LD ' S; and similarly OD ' V5/L
′
D ' T .

Since f ∈ V3 = L(3D0), multiplication by f induces a map

µf : S �
� // V

f // V5
// // T

and f(D) is the determinant of this map seen through the isomorphisms S ' OD
and T ' OD.

Unfortunately these isomorphisms are not explicit, so it would make no sense to
simply take the determinant of the matrix expressing this map on the si and the ti.
This is why we divide this determinant by that of the “identity” map

1 : S �
� // V

1 // V5
// // T

induced by the inclusion of V into V5.
More specifically, at line 7 we find relations between the si and the basis

t1, · · · , td0 , w′1, · · · , w′d′W of V5 = T ⊕ W ′
D, and we project these relations in T =

V5/W
′
D at the next two lines by dropping the rows of K corresponding to the w′i. The

matrixKs formed of the s-rows ofK is necessarily invertible since t1, · · · , td0 , w′1, · · · , w′d′W
are linearly independent, so M1 is well-defined and is the negative of the matrix of
the map 1 with respect to the bases si and ti. Its determinant ∆1 is zero iff. there
exists a nonzero element of S that lies in L′D, which means that the supports of D
and D0 are not disjoint, in which case we return FAIL. Else, by repeating the pre-
vious steps with the c� si instead of the si, we get Mf , the negative of the matrix
of µf , and we recover f(D) as its determinant ∆f divided by ∆1.

The complexity of this algorithm is O(gω).

Remark 2.11. It is actually more efficient to compute ∆1 as det(Kt)/ det(Ks) than
as det(KtK

−1
s ); we show the less efficient way here only for clarity. The same goes

of course for ∆f .

Algorithm 5 is only valid for f ∈ V3, which is in general not the case for the
function fx in the definition of the Frey-Rück pairing. Therefore the implementa-
tion of the pairing is still not completely straightforward. Our solution, inspired
by [Bru13], is presented below; we assume that algorithm 3 has been modified so as
to return the column c chosen at line 3 as well as W3.

12



Input: Matrices WT and WD representing L(2D0 − T ) and L(2D0 −D)
respectively, and m ∈ N such that [T −D0] ∈ J [m].

Output: An element of k× representing {[T −D0], [D −D0]}m ∈ k×/k×m.
1 (m0, i0, j0), · · · , (mn, in, jn)← an add-flip chain for m;
2 Initialize two vectors H and T indexed by 0 · · ·n

with H[0]← 1, H[1]← 1, T [0]← W0, W [1]← WT ;
3 f,WD′0

← Add-flip(W0,W0);

4 for s← 2 to n do
5 cs,Ws ← Add-flip(T [is], T [js]);
6 T [s]← Ws;

7 H[s]← fs(D′0)

fs(D)H[is]H[js]
, where fs is the function represented by cs;

// Using algorithm 5 twice, on (cs,WD) and (cs,WD′0
)

8 end
9 c∞ ← a non-zero combination of columns of V such that each of the

columns of c∞ �W0 lies in the span of the columns of T [n];

10 return H[n] f∞(D)
f∞(D′0)

, where f∞ is the function represented by c∞;

// Using algorithm 5 twice again

Algorithm 6: Frey-Rück pairing

Proof. (Cf. [Bru13, p. 39] and [Mil04, section 4]) For each s 6 n, denote by Ts
the unique effective divisor of degree d0 such that the matrix Ws represents the
space L(2D0 − Ts). Clearly T [s] = WTs and [Ts − D0] = ms[T − D0] for all s. In
particular, for s = n we find that [Tn −D0] = 0, so the space

L(D0 − Tn) = {v ∈ V | vL(D0) ⊂ L(2D0 − Tn)}

is 1-dimensional. As the matrices W0 and T [n] = Wn represent respectively the
spaces L(D0) and L(2D0 − T [n]), the column c∞ computed at line 9 represents a
non-zero element f∞ of this space, which therefore satisfies (f∞) = Tn −D0 and is
unique up to multiplication by a nonzero constant.

Define inductively a sequence of functions h0, · · · , hn ∈ k(C)× by h0 = h1 = 1
and hs = 1/hishjsfs for s > 2. Line 7 ensures that H[s] = hs(D − D′0) for all s.
Besides, we have (fs) = −3D0 + Tis + Tjs + Ts for all s by construction, so an
induction on s shows that

(hs) = msT − Ts − (ms − 1)D0

for all s. Since (f∞) = Tn −D0, we get (hn/f∞) = m(T −D0), so that

{[T −D0], [D −D0]}m = (hn/f∞)(D −D′0) = H[n]
f∞(D′0)

f∞(D)

as D′0 ∼ D0.
The complexity of this algorithm is O(gω logm) operations in k, to which one

should add the cost of the discrete logarithm in µm if one wants to use the linearized
version of the pairing.

Remark 2.12. We have introduced the divisor D′0 because the functions fs and f∞,
being elements of L(3D0), have poles at D0, and therefore cannot be evaluated there.
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Remark 2.13. This algorithm will fail if algorithm 5 fails or returns 0. In this
case, one should try again, making sure that at line 3 of algorithm 3, the function f
(which is called fs in algorithm 6) is chosen randomly, and possibly after replacing D
with a linearly equivalent divisor (using the same strategy as for the construction
of D′0). In practice, failure is rare since we work over a finite field large enough that
the curve has enough rational points to satisfy (2.2).

Note by the way that it is important here to always choose f randomly. Indeed,
the add-flip algorithm 3 chooses f as a nonzero element of a space which is computed
as a kernel, and most computer algebra systems give kernels by bases in echelon form.
As a result, if for instance we always chose the first basis vector for f , then some
coordinates of f would always be 0; in other words f would always vanish at some
fixed points, which would lead to systematic failure of algorithm 5.

Remark 2.14. It is straightforward to modify algorithm 6 so as to compute Weil
pairings if desired.

2.2.3 Local charts and evaluation maps

We now give a construction of Galois-equivariant rational maps J 99K A1 inspired
by the method for modular curves described in [Mas13, section 3.6]. In this con-
struction, we have in mind the case where the ground field is a number field k0 and
where we deal with points of J(k0), and our goal is to obtain a map yielding values
of reasonable arithmetic height (cf [Mas13] for details). Of course, condition 2.2
will not, in general, be satisfiable if we insist that the divisor Z be formed of points
in C(k0), so we use points over a p-adic field k ⊃ k0 instead. In other words, we
actually apply Makdisi’s algorithms to the base change of C from k0 to k.

We begin by constructing a map with values in the projective space P(V ). For
this, we assume that we are able to find effective divisors E1 and E2, both of de-
gree d0 − g. Then D0 −E1 has degree g, so given a sufficiently generic point x ∈ J ,
Riemann-Roch shows that there exists a generically unique effective divisor Ex of
degree g such that

[D0 − E1 − Ex] = x. (2.15)

Another application of Riemann-Roch then shows that the space L(2D0−E1−E2−
Ex) has dimension 1, so we get a map

J 99K P(V )
x 7−→ L(2D0 − E1 − E2 − Ex)

(2.16)

which is only a rational map due to the genericity assumptions on x.
The point of this definition is that in Makdisi’s framework, there are many

divisors D representing a given x ∈ J , that is to say such that [D −D0] = x. This
map is thus useful to turn the representation L(2D0 −D) of x into something that
does not depend on D, but only on x. Implementing it is fairly straightforward:

14



Input: A matrix WD for the space L(2D0 −D) representing a
point x = [D −D0] ∈ J , and matrices W1 and W2 for the
spaces L(2D0 − E1) and L(2D0 − E2), respectively.

Output: The value in P(V ) of the map (2.16) at x.
1 S ′1 ← DivAdd(WD,W1) ; // L(4D0 −D − E1)
2 S1 ← DivSub(S ′1,MV ) ; // L(2D0 −D − E1)
3 if number of columns of S1 > 1 then return FAIL;
4 s1 ← the unique column of S1 ; // (s1) = −2D0 +D + E1 + Ex
5 S ′2 ← DivSub(s1 �MV ,WD) ; // L(2D0 − E1 − Ex)
6 S ′′2 ← DivAdd(S ′2,W2) ; // L(4D0 − E1 − E2 − Ex)
7 S2 ← DivSub(S ′′2 ,MV ) ; // L(2D0 − E1 − E2 − Ex)
8 if number of columns of S2 > 1 then return FAIL;
9 return S2;

Algorithm 7: Evaluation of a rational map J 99K P(V )

Proof. The matrix S1 represents the space L(2D0 − D − E1), which is generically
of dimension 1 by Riemann-Roch. Thus s1 is well-defined up to multiplication by a
constant, and its divisor is (s1) = −2D0 +D + E1 + Ex.

Remark 2.17. We must ensure that the effective divisors D0, E1, and E2 are
actually defined over k0 (as opposed to k) if we want the map (2.16) to be Gal(k0/k0)-
equivariant. For D0, this is not a problem in practice, since the only requirement

that we need to satisfy is that d0
def
= degD0 > 2g + 1 (however we should try to

chose D0 so that d0 is as close to 2g + 1 as possible for efficiency). On the other
hand, E1 and E2 must be of degree exactly d0 − g, and this condition can be more
difficult to satisfy over a number field; but if we have to, we can take E1 and E2

to be defined over a finite extension of k0, and form symmetric combinations of the
values obtained for these divisors and their Galois conjugates.

Remark 2.18. The map (2.16) may be used as a local coordinate chart on J , and
for this purpose, E1 and E2 need not be defined over k0. One should however be
aware that the domain on which this map is an immersion may be smaller than its
domain of definition.

We now show how to turn the map (2.16) into an A1-valued map. In [Mas13],
we chose two rational points P,Q ∈ C(k) away from the supports of D0, E1, and E2,
and we composed the map (2.16) with the map s2 7−→ s2(P )/s2(Q), were s2 is a
nonzero element of the 1-dimensional space L(2D0−E1−E2−Ex). This approach
was suitable for modular curves, since they have plenty of rational cusps, but is
harder to adapt to a general curve; we therefore propose a different approach.

We fix a basis v1, v2, · · · of V , where the vi are defined over k0 (again for
Galois-equivariance reasons). For instance, if C is given to us by a plane equa-
tion f(x, y) = 0 over k0, we will have obtained the vi as explicit elements of k0(x, y)
by a Riemann-Roch space computation over k0. We then write s2 =

∑
λivi, where

the λi are scalars, and simply return the ratio λi1/λi2 , where i1 and i2 are fixed in-
dices. This is well-defined, since s2 is well-defined up to multiplication by a constant,
and straightforward to implement in Makdisi’s framework. In summary, our A1-
valued map is

α :
J 99K A1

x 7−→ λi1/λi2 ,
(2.19)
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where the λi are such that
∑

i λivi spans L(2D0 − E1 − E2 − Ex).
The complexity of one map evaluation is O(gω) operations in k.

Remark 2.20. When we compute Galois representations, we will evaluate α at the
points of an F`-subspace Tρ ⊂ J [`], and we will need α to be injective on Tρ so
that the Galois action on its values faithfully reflects the Galois action on the points
of Tρ. Then the polynomial

F (x) =
∏
t∈Tρ

(
x− α(t)

)
will have coefficients in k0, and its splitting field over k0 will be a subfield of the
field cut out by the Galois representation, and will agree with this field with high
probability. We can ensure that this is indeed the case by checking that F (x) is
squarefree.

We must ensure that the divisors E1 and E2 are such that [E1−E2] 6∈ Tρ if ` 6= 2.
Indeed, the divisor of s2 is of the form (s2) = −2D0 +E1 +E2 +Ex +E ′x where E ′x
is effective of degree g, and (2.15) shows that

x = [D0 − E1 − Ex] = −[D0 − E2 − E ′x].

Thus if there is a t ∈ Tρ such that [E1 − E2] = t, then E ′x = Et−x, so that the
map x 7→ s2 cannot be injective on Tρ unless ` = 2.

Remark 2.21. In particular, E1 and E2 should be distinct. In some cases, we may
be able to find a effective divisor E1 of degree d0 − g defined over k0, but not a
second one; in this case, we can replace the map (2.16) with the map

J 99K GrassdW (V )
x 7−→ L(2D0 − E1 − Ex),

(2.22)

where GrassdW (V ) is the Grassmannian of V parametrising subspaces of dimen-
sion dW = d0 + 1− g; in other words, interrupt algorithm 7 at line 5. Note that by
definition, E1 + Ex is the only effective divisor E > E1 such that [E −D0] = x, so
that the space L(2D0−E1−Ex) may be viewed as the normal form representation
of x (with respect to E1) in Makdisi’s framework.

The advantage of this approach is that we need only one k0-rational effective divi-
sor of degree d0−g, and that it requires half as much computation; its disadvantage is
that (2.22) now takes values in the Grassmannian of V , since dimL(2D0−E1−Ex) =
dW > 1 for generic x. We can still use Grassmannian coordinates with respect to
the basis (vi) of V to turn (2.22) into an A1-valued map, but experiment shows that
the values thus obtained have a worse arithmetic height. In what follows, we will
only use (2.19).

2.2.4 Makdisi over p-adic fields

We will later apply Makdisi’s algorithms over the ground field k = Qq. This means
that we must be able to perform linear algebra over k, namely kernel and equation
matrices (these are actually the same up to transposition), which is a non-trivial
problem since we can only represent elements of k on a computer with finite p-adic
accuracy.
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For this, we use Page’s recent implementation in [Pari/GP] of the computation
of kernels in Howell form over rings of the form R = Zq/pe, where Zq is the ring
of integers of Qq and e ∈ N. Recall that the Howell form of an R-submodule M
of Rd (d ∈ N) is a canonical generating set of this module, which is essentially
characterized by the fact that these generators are in reduced echelon form, and that
for all d′ 6 d, each element of M whose first d′ entries are 0 is an R-combination of
the generators whose first d′ entries are 0; cf. [How86] or [SM98] (beware that these
references consider row spans, whereas we deal with column spans in this article).
The following result shows that if we consider an approximation up to O(pe) of a
matrix A with coefficients in Zq which has “good reduction”, i.e. whose rank does
not decrease after reduction mod p, then we can compute a kernel matrix of A
with the same accuracy and satisfying the same conditions, and thus use Makdisi’s
algorithms without loss of p-adic accuracy.

Theorem 2.23. Let k be a non-Archimedian local field with ring of integers O,
uniformiser $ and residue field κ, and let A be an m × n matrix with coefficients
in O, representing a linear map T : On → Om. Let e ∈ N, and let Ke be the kernel
of the induced map Te : (O/$e)n → (O/$e)m. If rkk(A) = rkκ(A mod $), then the
Howell generators of Ke that are nonzero mod $ form an approximation mod $e of
an O-basis of kerT .

Remark 2.24. There can be Howell generators of Ke that are 0 mod $, as demon-
strated by the example A = (1 $), e = 2.

Proof. Let us write K∞ = kerT , and Kk for the kernel of the induced map kn → km,
so that K∞ = Kk ∩ On. Since O is a PID, we can consider an O-basis h1, · · · , hd ∈
On of K∞ in Hermite normal form.

We claim that the hi are linearly independent mod $. Indeed, let λi ∈ O,
and let x =

∑
i λihi ∈ K∞. If x ≡ 0 mod $, say x = $y for some y ∈ On,

then y ∈ On ∩Kk = K∞, which shows that the λi are all 0 mod $ since the hi are
linearly independent over k.

We can then prove by induction on e that the hi generate Ke. Indeed, for e = 1
this follows from the above and the fact that the rank of A does not decrease after
reduction mod $. Suppose this is true for e, and let x ∈ On be such that x mod $e+1

lies in Ke+1. Then x mod $e lies in Ke, so there exist λi ∈ O and y ∈ On such
that x =

∑
i λihi +$ey; therefore

0 ≡ Ax = $eAy mod $e+1.

Dividing by $e shows that y mod $ lies in K1, and is thus in the O-span of the hi,
and so is x.

It follows that the Howell form of Ke agrees with that of the hi mod $e; however
the hi are in echelon form, so they are part of their Howell form mod $e, and the
other vectors must be linear combinations of them that are 0 mod $.

Remark 2.25. It is shown in [SM98] that the Howell form of kerA mod pe can be
computed with the same complexity as if R = Zq/pe were a field, namely O(nω)
operations in R for A of size n × n. Therefore, we can execute the algorithms
presented in this section over R with the same number of operations in R as if R
were a field.
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2.2.5 Galois action

We now suppose that the curve C is defined over Qp (in practice, it is actually defined
over Q), and that we have a matrix WD with coefficients in Zq/pe representing a
point x ∈ J(Zq/pe) for some e ∈ N (in particular, if e = 1 then WD represents a
point in J(Fq)). We would like to compute a matrix WD′ representing xΦ to the same
p-adic accuracy, where Φ ∈ Gal(Qq/Qp) is the Frobenius. This is easy, provided that
the divisors D0 and Z are defined over Qp, and that we know how Φ acts on the
support of Z (in practice this information should be recorded at the creation of Z).

Input: A matrix WD representing a point x ∈ J(Zq/pe) for some e ∈ N.
Output: A matrix WD′ representing the point xΦ ∈ J(Zq/pe).

1 W ← WΦ
D ;

2 Permute the rows of W by the permutation induced by Φ−1 on Z;
3 return W ;

Algorithm 8: Frobenius

Proof. Recall that the j-th column of WD represents the reduction mod pe of a
function wj such that the wj form Qq-basis of the space L(2D0−D) representing x,
in that the i-th row of WD contains the value mod pe of the wj at the i-th point in
the support of Z. Since x = [D−D0], we have xΦ = [DΦ−D0], so xΦ is represented

by L(2D0 −DΦ) = L(2D0 −D)Φ; but vΦ(P ) =
(
v(PΦ−1

)
)Φ

for all P ∈ C(Qq).
The complexity of this algorithm is of course O(g2) operations in Qq.

Remark 2.26. We use a model for Zq/pe of the formR = Z[x]/
(
pe, T (x)

)
, where T (x)

is a lift to Z[x] of an irreducible polynomial over Fp. In this model, every element α
of Zq/pe is of the form α =

∑
i cix

i with ci ∈ Z/peZ and where θ denotes the image
of x in R, and the image of α by Φ is simply αΦ =

∑
i ciθ

′i, where θ′ ∈ R is the
unique root of T (x) congruent to θp mod p.

3 Differentiation of linear algebra operations

Let us now suppose that the ground field is a finite extension k of Qp with ring
of integers O and uniformiser $ (in practice, k = Qq, O = Zq, and $ = p).
Makdisi’s algorithms rely on linear algebra; in particular, they frequently involve
the computation of a kernel matrix or of an equation matrix (a.k.a. left kernel) of a
given matrix A with coefficients in O. The goal of this section is to determine how
these deform under $-adically small perturbations of A.

However, the problem thus presented is ill-defined, since a given vector space (in
this case, the right or left kernel of A) admits many different bases in general. We
therefore start by rigidifying the notions of kernel matrix and of equation matrix
defined at page 5. For simplicity, we restrict ourselves to the case where the matrix A
has full rank.

Let us treat the case of equation matrices first, since only this case will be used
later. We assume that we have set a rule that, given a matrix nAr (this notation
means that A has n rows and r columns) with coefficients in O and whose reduction
mod $ has rank r, assigns to it a supplement matrix, that is to say a matrix nSn−r
with coefficients in O such that the augmented matrix A+ = (nAr | nSn−r) is invert-
ible over O, and which only depends on the reduction of A mod $. For instance,
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we can impose that the j-th column of S has a 1 at row ij and 0 everywhere else, in
such a way that i1 < · · · < in−r and that the ij are as small as possible with respect
to some total ordering; this is what [Pari/GP]’s function matsupplement does.

Let us decompose the inverse B = (A+)−1 of A+ over O as

B =

(
rFn

n−rEn

)
.

We have

In = BA+ =

(
rFAr rFSn−r

n−rEAr n−rESn−r

)
,

whence the relations FA = Ir, FS = r0n−r, EA = n−r0r, and ES = In−r. In
particular, the rows of E are linearly independent (both over k and over its residue
field), so that E is an equation matrix for A. We call E the equation matrix of A,
and denote it by E = Eqn(A), the rule determining S being implicit. Besides, we
call F the F-complement of A.

The advantage of this definition is that it is easy to differentiate Eqn(A) with
respect to A. Indeed, let nHr be a matrix of the same size as A and whose entries
lie in $eO for some integer e > 1. The matrix A + H is congruent to A mod $,
so the augmented matrix (A+H | S) is still invertible (with the same S) over O,
whence (A+H)+ = A+ +H0 where H0 = (nHr | n0n−r). Therefore(

(A+H)+
)−1

= B −BH0B +O($2e)

=

(
rFn

n−rEn

)
−
(

rFn
n−rEn

)
(nHr | n0n−r)

(
rFn

n−rEn

)
+O($2e)

=

(
rFn

n−rEn

)
−
(

rFHFn
n−rEHFn

)
+O($2e),

which shows that

Eqn(A+H) = Eqn(A)− Eqn(A)HF +O($2e) (3.1)

where F is the F-complement of A and O($2e) denotes a matrix whose entries lie
in $2eO.

The case of kernels, being the transpose of the previous case, is similar: given rAn
with coefficients in O and whose reduction mod $ has rank r, we set

A+ =

(
rAn
n−rSn

)
where S is determined by similar rules so that A+ is invertible, and then if

(A+)−1 = (nLr | nKn−r)

then K is a kernel matrix of A, which we denote by K = Ker(A) with a capital K;
besides we have

Ker(A+H) = Ker(A)− LH Ker(A) +O($2e) (3.2)

for H of the same size as A and with coefficients in $eO.

Remark 3.3. In the next section, we will work with matrices with coefficients
in R = Zq/p2e, and our perturbation matrices H will have coefficients in I = peR.
Since I2 = 0, all the O($2e) terms will vanish in R.
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4 p-adic lifting of points of J

In this section, we suppose that we are given a matrix W with coefficients in Zq/pe
representing a point of J(Zq/pe) (in other words, a point of J(Qq) = J(Zq) with
absolute accuracy O(pe)) for some e ∈ N, whereas the data representing J itself
have been precomputed with accuracy at least O(p2e) (meaning that the matri-
ces KV3 , MV , etc., have coefficients in Zq/pe

′
where e′ > 2e). Our goal is to find a

deformation of W over Zq/p2e which represents a point of J(Zq/p2e). Once we have
solved this problem, we will be able to lift quadratically a representation of a point
in x̄ ∈ J(Fq) (given by a matrix for WD with coefficients in Fq) to a representation
to arbitrary p-adic accuracy of a point of x̃ ∈ J(Qq) which reduces to x̄ mod p.

Our approach consists in determining how a deformation of the input of the
membership test (algorithm 4) perturbs the execution of this algorithm. Let us
introduce some notation: given a commutative ring R and a column vector c ∈ RnZ ,
we will denote by ∆c the diagonal matrix of size nZ and coefficients in R whose
diagonal is formed of the coefficients of c. Also define r = nZ − dW .

Let S be a matrix of size nZ×dW and coefficients in Zq, whose columns si ∈ ZnZq
are independent mod p and form a basis of a Qq-subspace of V of dimension dW (this
is the case in particular if S is an arbitrary lift ofW still representing a subspace of V ,
in view of the conventions established in remark 2.4). An analysis of algorithm 4
shows that if we called this algorithm on S, then the matrix W ′ introduced at line 2
would be computed as the kernel of the matrix

KV3
...

Eqn(s1 �MV )∆sm
...


where m ranges from 1 to dW and where we assume without loss of generality that
the w chosen at line 1 is s1. Indeed, the block of equations KV3 describes the
column vectors c ∈ QnZ

q representing elements of V3 = L(3D0), whereas for each m
the block of equations Eqn(s1�MV )∆sm describes the c such that sm� c represents
an element of f1V = f1L(2D0), where f1 is the function represented by s1. In
particular, for m = 1 this block is redundant with KV3 since D0 > 0; we therefore
define

K(S) =


KV

...
Eqn(s1 �MV )∆sm

...


where m ranges from 2 to dW . Algorithm 4 shows that S represents an element
of J(Qq) if and only if the Qq-rank of K(S) is r and not more.

Since by assumption the matrix W represents a point of J(Zq/pe), the ma-
trix K(W ) is thus the reduction mod pe of a matrix with coefficients in Zq and Qq-
rank r.

Let now W̃ be a arbitrary lift of W to Zq/p2e which still represents a subspace
of V . For instance, such a lift can be obtained by finding a matrix U with coefficients
in Zq/pe such that W = MVU , and taking W̃ = MV Ũ where Ũ is an arbitrary lift

of U to Zq/p2e. The matrix K(W̃ ) is then a lift of K(W ) to Zq/p2e, and W̃ represents
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a point x̃ ∈ J(Zq/p2e) if and only if K(W̃ ) is the reduction mod p2e of a matrix
with coefficients in Zq and of Qq-rank r (and x̃ is then necessarily a lift of the
point x ∈ J(Zq/pe) represented by W ).

Enforcing this rank condition in terms of vanishing of minors would be inefficient;
instead we use the following method.

Lemma 4.1. Let mMn =

(
rAr rBn−r

m−rCr m−rDn−r

)
be an m×n matrix with coefficients

in a field such that the r× r block A is invertible. Then rkM > r, with equality iff.

D − CA−1B = m−r0n−r.

Proof. The matrix nPn =

(
Ir −A−1B
0 In−r

)
is clearly invertible, and

MP =

(
A 0
C D − CA−1B

)
.

Let K be the reduction of K(W̃ ) mod p. It has coefficients in Fq, and does not

depend on the lift W̃ of W . Since W represents a point of J(Zq/pe) with e > 1,
the Fq-rank of K is exactly r; indeed K = K(W ), where W is the reduction of W
mod p, which does represents a point of J(Fq). Therefore, K has an invertible minor

of size r. Possibly after permuting the rows and columns of K(W̃ ), we may assume
that the top-left r × r block of K is invertible over Fq; we will suppose here that
this is directly the case for the clarity of exposition. Then the top left r × r block
of K(W̃ ) is invertible over Zq/p2e. Splitting

K(W̃ ) =

(
A B
C D

)
as in lemma 4.1, we have therefore established that

W̃ represents a point of J(Zq/p2e)⇐⇒ D − CA−1B = 0 mod p2e. (4.2)

Furthermore, we can determine how K(W̃ ) deforms with W̃ , thanks to the for-

mulas established in section 3. Indeed, let w̃1, · · · , w̃dW be the columns of W̃ , so
that

K(W̃ ) =


KV

...
Eqn(w̃1 �MV )∆w̃m

...

 .

If we replace W̃ with a deformation W̃ + MVH still representing a subspace of V ,
whereH is a matrix with coefficients in peZq/p2e whose columns we denote by h1, · · · , hdW ,
then for each m, the column w̃m gets replaced by w̃m + MV hm, so ∆w̃m gets
shifted by ∆MV hm ; whereas w̃1 � MV = ∆w̃1MV gets shifted by ∆MV h1MV , so
that Eqn(w̃1 �MV ) gets shifted by −Eqn(w̃1 �MV )∆MV h1MV F by (3.1), where F
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is the F-complement of Eqn(w̃1�MV ) as defined in section 3. Thus in total, K(W̃ )
gets shifted by 

0
...

Eqn(w̃1 �MV )
(

∆MV hm −∆MV h1MV F∆w̃m

)
...

 . (4.3)

It is therefore easy to see how the blocks A, B, C, and D deform in terms of
the hm, and thus to deduce linear equations that the hm must satisfy for D−CA−1B
to vanish mod p2e.

These observations translate into the following algorithm:
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Input: A matrix W over Zq/pe representing a point in J(Zq/pe).
Output: A matrix W̃ ≡ W mod pe over Zq/p2e representing a lift of this

point to J(Zq/p2e).
// Lift W so that it still represents a subspace of V

1 K ← kernel of the horizontal concatenation (W |MV ) mod pe;
2 Drop the first dW rows of K and lift the rest to Zq/p2e;

3 W̃ ←MVK mod p2e;

4 w1, · · · , wdW ← the columns of W̃ ;
// Save on number of variables

5 I ← a subset of {1, · · · , nZ} of size dW such that the corresponding rows
of W form an invertible matrix;

6 V0 ← a matrix representing the subspace {v ∈ V | v(Pi) = 0 ∀i ∈ I} of V ,
where the Pi are as in section 2;

7 v1, · · · , vd0 ← column vectors of V0;
// Evaluate D − CA−1B

8 E,F ← equation matrix and F-complement of w1 �MV ;

9 K ← stack of KV and of the E∆wm for 2 6 m 6 dW ; // K(W̃ )
10 A,B,C,D ← splitting of K as in lemma 4.1;
11 R← (D − CA−1B)/pe mod pe;

// Precompute some data

12 for m← 2 to dW do
13 Fm ← −MV F∆wm mod pe;
14 end

// See the effect of deforming wj by pevi for each j 6 dW, i 6 d0

15 for i← 1 to d0 do
16 Ei ← E∆vi mod pe;
17 for j ← 1 to dW do
18 if j = 1 then
19 k ← a matrix with the same shape as K, formed by stacking a

block of 0 instead of KV and the EiFm instead of the E∆wm

for 2 6 m 6 dW ;

20 else
21 k ← a matrix with the same shape as K, with Ei instead

of E∆wj and 0 elsewhere;

22 end
23 a, b, c, d← splitting of k;
24 ri,j ← d− cA−1B + CA−1aA−1B − CA−1b ;

25 end

26 end
// Solve linear system

27 H ← a d0 × dW matrix over Zq/pe such that R +
∑

i

∑
j hi,jri,j = 0;

28 return W̃ + peV0H;

Algorithm 9: Lift
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Proof. We begin by finding a lift W̃ of W to Zq/p2e which still represents a subspace
of V ; this goal is attained at line 3.

We are then looking for a matrix H ′ of the same size as W and with coefficients
in peZq/p2eZq such that W̃ ′ = W̃ + H ′ satisfies criterion (4.2). In particular this

lift W̃ ′ must also represent a subspace of V , so we actually look for H ′ of the
form H ′ = MVH for some matrix H with coefficients in peZq/p2eZq.

Given a matrixM with nZ rows, writeMI for the matrix formed by the rows ofM
indexed by I, where I is defined at line 5. The matrices W̃I and W̃ ′

I are invertible
over Zq/p2e by definition of I. Therefore there exists an invertible matrix P (which

is congruent to the identity mod pe) such that W̃ ′
IP = W̃I . Since the matrices W̃ ′P

and W̃ ′ represent two bases of the same subspace of V (P being the change-of-

basis matrix), we may impose that the rows of W̃ indexed by I remain unchanged,
i.e. that H ′ be actually of the form V0H for some H. This reduces the number of
unknowns and thus improves the efficiency of the algorithm. Note that the number
of columns of V0 is dimV − dimW = codimV W = d0.

We then construct the matrix K = K(W̃ ), and split it into blocks A,B,C,D as
explained above. In view of (4.2), we have D − CA−1B = 0 at least mod pe, so the
division defining R is exact.

Next, in the double loop we determine for each i and j how deforming W̃ by
adding pevi to its j-th column perturbs R thanks to (4.3): in each case, we compute k
such that K shifts by pek, and deduce ri,j such that R shifts by ri,j.

It then only remains to solve a linear system over Zq/pe so as to find a linear

combination of the ri,j killing R, and to perform the corresponding change on W̃ .
The complexity of this algorithm is dominated by these last two steps. The ma-

trices A and B have size O(g)×O(g), whereas C and D have size O(g2)×O(g), so
the matrix computations performed at line 24 require O(gω+1) operations in Zq/pe.
In view of remark 4.5 below, the complexity of this algorithm is thus O(gω+3) oper-
ations in Zq/pO(e).

Remark 4.4. The matrices Ei and Fm are precomputed for efficiency reasons.
Besides, multiplications by matrices of the type ∆c should not be performed literally
but rather by rescaling the rows or columns as appropriate.

Remark 4.5. The tangent space of J has dimension g, and the fibres of the map

Effd0(C) −→ J
D 7−→ [D −D0]

have dimension d0 − g. Since we have rigidified the situation by taking H ′ of the
form V0H, the linear system that we solve at line 27 has a solution space of dimen-
sion d0 = O(g). But the matrices K(W̃ ) and R have size O(g2)×O(g), so this system
has O(g3) equations in O(g2) unknowns. It is thus very redundant, and a lot of time
can be saved by solving O(g2) random combinations of its equations and checking
that we have indeed obtained a solution (e.g. thanks to algorithm 4), instead of
solving it directly. Without this, the complexity would be higher than O(gω+3).

Remark 4.6. Even though the performance of our implementation is quite satis-
factory (cf. section 7), it is unfortunate that the complexity of our lifting algorithm
is O(gω+3) whereas Makdisi’s algorithms perform arithmetic in J in only O(gω). In
future work, we plan to improve the complexity of our lifting algorithm, by using
the asymptotically faster membership test described in Proposition/Algorithm 4.12
of [KM07].
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5 p-adic lifting of torsion points

Let m ∈ N, and let W be a nZ × dW matrix with coefficients in Fq representing
an m-torsion point x ∈ J(Fq)[m]. Thanks to algorithm 9 presented in the previous

section, we can find a lift W̃ of W representing a lift x̃ ∈ J(Qq) to arbitrary p-adic
accuracy; however this point x̃ will not in general be m-torsion. The purpose of this
section is to explain how to modify algorithm 9 so that the output W̃ represents a
point of J(Qq) which is still m-torsion.

In this section and in the next one, whenever n ∈ Z and W is a matrix represent-
ing a point x ∈ J , we will denote by [n]W a matrix representing [n]x ∈ J obtained
by repeated use of algorithm 3.

For simplicity, we will assume that m is coprime to p; indeed the discussion about
formal groups below shows that this ensures that the m-torsion lift of x to J(Qq) is
unique. In practice, we will take m = `, a prime distinct from p.

We actually present two methods: the first one is more efficient when the p-adic
accuracy is still low, whereas the second one should be used when p-adic accuracy
becomes higher.

5.1 Method 1: Killing the kernel of reduction

Let p = pZq be the maximal ideal of Zq, and for each e ∈ N, let us denote by Je
the kernel of the reduction map J(Qq) // // J(Zq/pe) . For instance J1 is the kernel

of J(Qq) // // J(Fq) .

Since J has good reduction at p, and since Qq is unramified, the theory of formal
groups (cf. for instance [Sil09, theorem IV.6.4.b]) provides us with a p-adic Lie group
isomorphism

log : J1
∼−→ pg

which maps Je to (pe)g for all e (where (pe)g denotes the g-fold cartesian product of
the set pe). In particular, Je/J2e ' (pe/p2e)g is an Abelian group of exponent pe.

Let now x ∈ J(Zq/pe)[m] be an m-torsion point known to accuracy O(pe). It has
a unique m-torsion lift x̃ ∈ J(Zq/p2e)[m], and its other lifts are of the form x̃′ = x̃+y
with y ∈ Je/J2e. Therefore, if N ∈ N is such that pe | N and that N ≡ 1 mod m,
then for any lift x̃′ of x, [N ]x̃′ = x̃ is the m-torsion lift of x. This leads to the
following algorithm:

Input: A matrix W over Fq representing a point x ∈ J(Fq)[m], and an
integer e0 ∈ N.

Output: A matrix W̃ over Zq/pe0 representing the lift of x in J(Zq/pe0)[m].

1 W̃ ← W ;
2 e← 1;
3 while e < e0 do

4 W̃ ← a lift of W̃ to Zq/p2e ; // Using algorithm 9

5 N ← an integer such that pe | N and N ≡ 1 mod m ; // By CRT

6 W̃ ← [N ]W̃ ;
7 e← 2e;

8 end

9 return W̃ ;

Algorithm 10: Lifting torsion points using multiplications
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The complexity of each iteration of the loop is O
(
gω+3 +gω log(mpe0)

)
operations

in Zq/pO(e0), the terms coming respectively from algorithm 9 and from multiplication
by N = O(mpe0).

Remark 5.1. We could also apply algorithm 9 repeatedly so as to get a lift W̃
of W to precision e0, and then multiply by N where pe0−1 | N and N ≡ 1 mod m.
However, this would be less efficient as we would perform all the multiplications at
high accuracy. Anyway, it is better to use algorithm 11 for large e.

Remark 5.2. In practice, we often use this algorithm to lift an F`-basis of Tρ ⊂ J [`]
from J(Fq)[`] to J(Zq/pe0)[`]. In this case, we can afford to multiply each element of
the basis by a nonzero scalar in F×` in the process, so we can save a bit of effort by
suppressing the requirement that N ≡ 1 mod ` and simply taking N = pe at line 5.

5.2 Method 2: Using a coordinate chart at the origin

We can use algorithm 7 as a coordinate chart c′ : U −→ P(V ), where U ⊂ J(Zq) is
the preimage of a Zariski-dense subset of J(Fq). In the rest of this section, we assume
that U contains 0 ∈ J(Zq), since this is the case for “most” choices of divisors E1

and E2 used as parameters by algorithm 7. Therefore, we are able to take a lift W̃
of W thanks to algorithm 9, multiply the corresponding point by m, and apply c′

to see where in the vicinity of the origin of J the result lies.
Ideally, we would like to compute the differential of the composition of the

multiplication-by-m map followed by c′. Unfortunately this seems too complicated,
so we settle for the following simpler approach: as explained in remark 4.5, a point
x ∈ J(Zq/pe) possesses many different lifts x̃ ∈ J(Zq/pe) owing to the tangent space
of J , so we can take sufficiently many such lifts x̃i, determine the coordinates of the
[m]x̃i thanks to c′, and solve a linear system to deduce a “combination” x̃ of the x̃i
such that [m]x̃ = 0.

This idea translates into the following algorithm:
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Input: A matrix W over Fq representing a point x ∈ J(Fq)[m], and an
integer e0 ∈ N.

Output: A lift W̃ of W over Zq/pe0 representing the lift of x in J(Qq)[m].

1 W̃ ← W ;
2 e← 1;
3 c′0 ← a column vector with entries in Zq/pe0 representing c′(0);
4 j0 ← a integer 6 nZ such that c′0[j0] 6≡ 0 mod p;
5 c0 ← dehomogenisation of c′0 wrt. the j0-th entry;
6 while e < e0 do
7 for i← 1 to g + 1 do

8 W̃i ← lift of W̃ to Zq/p2e; // Obtained from algorithm 9 by

picking a random solution to the linear system at

line 27

9 xi ← point of J(Zq/p2e) represented by [m]W̃i;
10 c′i ← column vector with entries in Zq/p2e representing c′(xi);
11 ci ← dehomogenisation of c′i wrt. the j0-th entry;
12 κi ← (ci − c0)/pe mod pe;

13 end

14 Find λ1, · · · , λg+1 ∈ Zq/pe such that
∑g+1

i=1 λiκi = 0 and
∑g+1

i=1 λi = 1, or

start over with other lifts W̃i if no such λi exist;
15 Lift the λi to Zq/p2e so that

∑
i λi = 1 still;

16 W̃ ←
∑
λiW̃i;

17 Check that the point of J(Zq/p2e) represented by W̃ is m-torsion, and if
not start over with another chart c′;

18 e← 2e;

19 end

20 return W̃ ;

Algorithm 11: Lifting torsion points using a chart

Proof. Let us assume for now that the reduction mod p of the differential of the
“chart” c′ : U −→ P(V ) at 0 ∈ J(Zq) has full rank g, which is extremely likely.
Let c : U 99K QnZ−1

q denote c′ followed by the embedding P(V ) ↪→ PnZ induced by
V ↪→ QnZ

q (cf. section 2) and then dehomogenised wrt. the j0-th coordinate. Note
that by our choice of j0, c is defined on the points of J(Zq) that reduce to 0 ∈ J(Fq),
and actually sends them to ZnZ−1

q . Thus for example at line 5, we compute c0 =
c(0) mod pe0 .

Suppose now that we have a matrix W with coefficients in Zq/pe for some e ∈ N
representing a point x ∈ J(Zq/pe)[m]. Say that a lift of W to Zq/p2e is acceptable
if it represents a point of J(Zq/p2e), i.e. if it represents a subspace of V and passes
the membership test 4 (but it need not be m-torsion), and consider the map

κ :
{

Acceptable lifts of W
}
−→ (Zq/pe)nZ−1

W̃ 7−→
c(x[m]W̃ )− c0

pe
.

where x[m]W̃ ∈ J(Zq/p2e) denotes the point represented by the matrix [m]W̃ . SinceW

represents an m-torsion point of J(Zq/pe), x[m]W̃ reduces to 0 ∈ J(Zq/pe) for all W̃ ,
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so the expression c(x[m]W̃ ) makes sense and is congruent to c0 mod pe. Thus κ is

well-defined, and can be used to measure how a lift W̃ of W fails to be m-torsion,
in that

The point of J(Zq/p2e) represented by W̃ is m-torsion⇐⇒ κ(W̃ ) = 0 mod pe.
(5.3)

More precisely, let W̃ be an (unknown) fixed acceptable lift of W representing

an m-torsion point of J(Zq/p2e), so that κ(W̃ ) = 0 mod p2e, and let V0 be the
matrix defined at line 6 of algorithm 9. This algorithm shows that any lift of W of
the form W̃ + peV0H, where H is matrix corresponding to a vector in the kernel of
the linear system solved at line 27 of algorithm 9, is also an acceptable lift; and for
such a lift, we have κ(W̃ + peV0H) = κ(W̃ ) + T (V0H) = T (V0H), where T is the
differential of κ, which is the reduction mod pe of a Zq-linear map of rank g by our
assumption on c′.

Besides, the lifts constructed by algorithm 9 all have this form, so the g+1 lifts W̃i

considered at line 8 of algorithm 11 may be written as W̃i = W̃ + peV0Hi. The g+ 1
vectors κi = κ(W̃i) = T (V0Hi) found at line 12 are necessarily linearly dependent,
so at line 14 we can find scalars λi ∈ Zq/pe such that

∑g+1
i=1 λiκi = 0 mod pe non-

trivially. This relation can be rewritten as
∑g

i=1 λi(κi−κg+1) +
(∑g+1

i=1 λi
)
κg+1 = 0,

so assuming that the g vectors (κi − κg+1) are linearly independent mod p (which
happens with high probability, else we start over),

∑g+1
i=1 λi cannot be zero mod p;

we can therefore rescale the λi so that
∑g+1

i=1 λi = 1. Define then

W̃ ′ =

g+1∑
i=1

λiW̃i

= W̃ +

g+1∑
i=1

λi(W̃i − W̃ )

= W̃ + peV0

g+1∑
i=1

λiHi

as at line 16. This is an acceptable lift of W , which satisfies

κ(W̃ ′) = T

(
V0

g+1∑
i=1

λiHi

)
=

g+1∑
i=1

λiκi = 0 mod pe;

it is therefore m-torsion by (5.3).
Now in all generality, as noted in remark 2.18, we cannot be completely certain

that the reduction mod p of the differential of c′ at 0 has full rank g. If it is does
not, then c′ will not be a local immersion, so (5.3) is only a necessary but not
sufficient condition. This nasty case does happen in practice, albeit very rarely,
whence the test at line 17. In practice, this situation is revealed by the fact that the
vectors (λi)i6g+1 satisfying

∑
i λiκi = 0 at line 14 form a space of dimension more

than 1, so that it is sufficient to execute this test only at the first iteration of the
while loop.

The complexity of each iteration of this loop is O(gω+3 + gω+1 logm) operations
in Zq/pO(e0).

Remark 5.4. One should not be surprised that the (a priori distinct) matrices W̃

and W̃ ′ both represent the unique m-torsion lift of x to J(Zq/p2e), cf. remark 4.5.
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Remark 5.5. Of course, the computation of the g + 1 lifts W̃i at line 8 should not
be done by calling algorithm 9 g + 1 times, but by modifying it so that it returns
g + 1 random acceptable lifts.

Remark 5.6. When lifting from J(Zq/pe)[m] to J(Zq/p2e)[m], algorithm 11 per-
forms O

(
gω+3 + gω log(mpe)

)
operations in Zq/pO(e), whereas algorithm 10 per-

forms O(gω+3 + gω+1 logm). In order to lift a point from J(Fq)[m] to J(Qq)[m],
it is therefore reasonable to start with the method of algorithm 10 for low values
of e, and to switch to the method of algorithm 11 when e exceeds g logm/ log p. If we

use fast arithmetic, this results in a complexity of Õ(ea log p)O(gω+3+gω+1 logm) bit
operations to lift a point of J(Fq)[m] to J(Zq/pe)[m], where q = pa. Note however
that the loop at line 7 of algorithm 11 can very well be executed in parallel.

6 Application to the computation of Galois rep-

resentations

We now finally come back to the initial problem, that of computing the Galois
representation ρ afforded by the subspace Tρ ⊂ J [`]. Recall that we denote by Φ
the Frobenius at p, and that we assume that we know the characteristic polyno-
mial χρ(x) ∈ F`[x] of ρ(Φ), as well as Lp(x) ∈ Z[x], that of Φ acting on J . Also
recall that we assume that χρ(x) and its cofactor Lp(x)/χρ(x) are coprime in F`[x].

6.1 Splitting the representation

The first thing to do is to determine q = pa so that the points of Tρ are defined
over J(Qq). The smallest such a is of course the multiplicative order of ρ(Φ), which
can be bounded thanks to the following result:

Proposition 6.1. Suppose χρ(x) factors in F`[x] as
∏

i χi(x)ei, where the χi(x) ∈
F`[x] are pairwise distinct irreducible polynomials of respective degrees di, and the ei
are positive integers. Let ai be the multiplicative order of the class of x in F`[x]/χi(x).
Then the order of ρ(Φ) is of the form

a = `u lcm(ai)

for some integer u 6 maxid log ei
log `
e, where d·e denotes rounding from above to the

nearest integer.

Proof. Let φ = ρ(Φ). Since the χi(x)ei are pairwise coprime, the F`[φ]-module T ρ
decomposes as a direct sum

⊕
iMi of “generalised eigenspaces” Mi = kerχi(φ)ei .

The order of φ is thus the lcm of the order of the φi, where φi = φ|Mi
. As ai

divides `di − 1 for all i, the ai are coprime to `, so it is enough to show that for all i,
the order of φi is of the form `uiai for some integer ui 6 d log ei

log `
e.

The characteristic polynomial of φi is χi(x)ei , so its eigenvalues in F` are the
roots of χi(x), and are thus of multiplicative order ai. Triangularising φi over F`
thus shows that φni is unipotent iff. ai divides n. In particular, ai divides the order
of φi.

Write φaii = 1 +Ni with Ni nilpotent. The characteristic polynomial of Ni is xdi ,
so Ndi = 0 by Cayley-Hamilton. Induction on n reveals that (1+N)`

n
= 1+N `n for
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all n ∈ N. So if Ui = d log ei
log `
e, so that `Ui > di, then we have φ`

Uiai
i = (1 +N)`

Ui = 1,

which shows that the order of φi divides `Uiai. Since this order is also divisible by ai,
the result follows.

Remark 6.2. It is clear that the bound u 6 maxid log ei
log `
e is optimal.

In order to determine ai, we simply have to find the primes r dividing ni =
`di − 1, and to test for each such r whether xni/r is 1 in F`[x]/χi(x). Fortunately, in
practice `di − 1 is not very large, so finding all these primes is not difficult.

In particular, in the case when χρ(x) is squarefree, that is to say when ei = 1 for
all i, then u = 0, so we find that the order of ρ(Φ) is exactly a = lcm(ai).

Remark 6.3. If χρ(x) is not squarefree, then we obtain an upper bound on a instead.
The exact value of u, and thus of a, can then be determined by experimenting, but
it is better to avoid this case by changing p if possible.

In fact, if we know (or can afford to determine) χρ(x) for not just one but several
primes p, it is advisable for the efficiency of the rest of the computation to choose p
so that a is minimal; cf. the examples in section 7.

6.2 Computing a basis of Tρ mod p

Now that we have chosen q = pa, we can let Tρ ⊂ J(Fq)[`] be the reduction of Tρ
mod p. The next step in the computation of ρ consists in finding dimTρ matrices W
over Fq representing an F`-basis of Tρ. Since dimTρ is known (for instance it is the
degree of χρ(x)), our strategy consists in generating elements of Tρ at random until
we obtain a basis, which can be confirmed by algorithm 6.

Let N = #J(Fq), which can be computed explicitly as

N = Res
(
Lp(x), xa − 1

)
.

Let us factor
N = `vM

where M ∈ N is coprime to `; we also define

ψ(x) = Lp(x)/χρ(x) ∈ F`[x].

A simple-minded way to generate elements of Tρ proceeds as follows:

1 x← a random point of J(Fq);
2 x← [M ]x ; // Project onto J [`∞]
3 while [`]x 6= 0 do
4 x← [`]x ; // Project onto J [`]

5 end

6 x← ψ(Φ)x ; // Project onto Tρ
7 return x;

Algorithm 12: An unbalanced way to generate points of Tρ

SinceN = O(qg) by the Weil bounds, the complexity of this algorithm isO
(
(g log q+

a log `)gω
)

operations in Fq.
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Unfortunately, the points obtained this way are usually far from being equidis-
tributed. For instance, suppose that J(Fq)[`∞] is of the form Z/`2Z × Z/`Z; then
with high probability, after line 2, x has the form (u, v) with u of order `2 and v
of order `, so that the loop at line 3 turns it into (`u, 0), so we almost always get
points of J(Fq)[`] ' Z/`Z× Z/`Z whose second component is zero.

We can try to circumvent this issue by performing line 6 before the loop at line
3, but this does not help in case Tρ itself has `-power torsion; besides, ψ(x), which
is computed mod ` only, will not be the correct cofactor, so the point we get in the
end will not even lie in Tρ in general!

In order to remedy this issue, [Bru13, section 3.9] suggests using the Kummer
map

J −→ J [`]
x 7−→ yΦ − y, where [`]y = x.

Bruin shows that this process leads to uniform distribution in J [`]. However, this
method requires enlarging the field Fq, which considerably slows dow the compu-
tations, especially the multiplication-by-M step (note that M is of the order of
magnitude of qg).

We propose instead to modify algorithm 12 by including a process resembling
Gaussian elimination. To demonstrate our idea, suppose again that J(Fq)[`∞] '
Z/`2Z × Z/`Z, and take Tρ = J [`] to simplify. If we start with two random
points x1, x2 ∈ J and we apply algorithm 12, after line 2 these points become x1 =
(u1, v1) and x2 = (u2, v2) ∈ J [`∞], so unless one of the ui is 0 mod `, line 3 leads us
to y1 = (`u1, 0) and y2 = (`u2, 0), which fail to form a basis of J [`]. Nevertheless,
we can turn this failure to our advantage! Indeed, thanks to algorithm 6 we can
find λ1, λ2 not both 0 such that λ1y1 +λ2y2 = 0, so dividing this relation by ` yields
a new `-torsion point x3 = λ1x1 + λ2x2, whose second component is nonzero with
high probability.

Remark 6.4. Variants of this Gaussian elimination strategy appear in several places
of the literature, such as [Rav08].

This idea leads to the following algorithm, which performs very well in practice:
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Input: #J(Fq) = `vM , Lp(x) ∈ Z[x], and χρ(x) ∈ F`[x].
Output: An F`-basis of Tρ.

1 ψ̃(x)← Hensel lift to precision O(`v) of Lp(x)/χρ(x) ∈ F`[x];
2 r ← 0;

3 d← degχρ(x); // d = dimTρ
4 while r < d do
5 r ← r + 1;
6 repeat
7 x← a random point of J(Fq);
8 x← [M ]ψ̃(Φ)x;
9 y ← x;

10 o← 0;
11 while [`]y 6= 0 do
12 y ← [`]y;
13 o← o+ 1;

14 end

15 until y 6= 0;
16 xr ← x;
17 yr ← y;

18 or ← o ; // New point yr = `orxr ∈ Tρ, can we keep it?

19 if r > 1 then
20 n← r;
21 z1, · · · , zn ← random elements of J(Fq);
22 P ← matrix of size n× r with coefficients Pi,j = [yj, zi]` ∈ F`;
23 R← KerP ;
24 if dimR > 2 then
25 n← n+ 1;
26 go to line 21;

27 end
28 if dimR = 1 then
29 (λ1, · · · , λr)← a generator of R;

// Is this an actual relation?

30 if
∑

i6r[λi]yi = 0 then
31 I ← {i |λi 6= 0};
32 µ← mini∈I oi;
33 if µ > 1 then
34 x←

∑
i∈I [λi`

oi−µ]xi ; // Divide the relation

35 go to line 9;

36 else
37 r ← r− 1 ; // If cannot divide, give up this point

38 end

39 end

40 end

41 end

42 end
43 return y1, · · · , yd;

Algorithm 13: Finding a basis of Tρ
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We now show the correctness of this algorithm and discuss its efficiency. Let us
begin by introducing the main ideas.

6.2.1. First of all, we note that this algorithm needs to pick random points of J(Fq)
at line 7, and also at line 21. Sophisticated methods to achieve this uniformly are
presented in [Bru13], but we content ourselves with a much cruder approach: we
pick a random subset S of {1, · · · , nZ} of cardinality d0, and compute by linear
algebra the subspace W of V formed of vectors whose i-th coordinate vanishes
for each i ∈ S. Indeed, this subspace represents the point

[∑
i∈S Pi −D0

]
of J ,

where the Pi are as in section 2. Since these Pi have been chosen at random,
this approach performs very well in practice. In order to analyse the performance of
algorithm 13, we will assume that the points thus obtained are uniformly distributed
in J(Fq).
6.2.2. Let Lp(x) = χ̃ρ(x)ψ̃(x) be the `-adic lift to accuracy O(`v) of the co-
prime factorisation Lp(x) ≡ χρ(x)ψ(x) mod `, and let Λ = J(Fq)[`v] 6 J(Fq)
and Γ = J(Fq)[`v, χ̃ρ(Φ)] = Λ[χ̃ρ(Φ)] 6 Λ. In view of the Chinese remainder
isomorphisms

J(Fq) ' J(Fq)[`v]× J(Fq)[M ] = Λ× J(Fq)[M ]

and
Λ ' Λ[χρ(Φ)]× Λ[ψ(Φ)] = Γ× Λ[ψ(Φ)],

if g1, · · · , gr ∈ J(Fq) are uniformly chosen random points as in 6.2.1, then the

points hj = [M ]ψ̃(Φ)gj are uniformly distributed in Γ.

6.2.3. Observe now that Γ is a finite Abelian `-group, whose `-torsion subgroup Γ[`]
is precisely the space Tρ that we are trying to generate. It is clear that sufficiently
many elements hi of Γ generated as in 6.2.2 will form a generating set of Γ with high
probability; indeed, if H = 〈h1, · · · , hk〉 is a strict subgroup of Γ, then it has index
at least `, so hk+1 6∈ H with probability at least 1− 1

`
.

6.2.4. Suppose thus that we have elements hj ∈ Γ which form a generating set.
We can determine the order of each hj by repeatedly multiplying then by ` until
the result is 0. Let n ∈ N be such that the largest of these orders is `n, so that the
exponent of Γ is `n, and consider the projection morphism

π = [`n−1] : Γ −→ Γ[`] = Tρ.

Let P be the matrix such that Pi,j = [π(hj), zi]` ∈ F`, where the zi are sufficiently
many random elements of J(Fq) generated as in 6.2.1, and let R be a matrix whose
columns form an F`-basis of KerP . Then the columns of R span a space containing
all the F`-linear relations satisfied by the π(hj). Besides, for the same reason as
in 6.2.3, the linear forms y 7→ [y, zi]` generate HomF`(π(Γ),F`) with high probability;
we can check that this indeed the case by testing whether

∑
j Rj,kπ(hj) = 0 for

each k. If this is not the case, we generate more zi, and try again; else the h′k =∑
j R̃j,khj form a generating set of Kerπ = Γ[`n−1], where R̃j,k denotes an arbitrary

lift to Z of Rj,k ∈ F`.
By iterating the process with Γ[`n−1] instead of Γ and the h′k instead of the hj,

we thus get generating sets for Γ[`n−m] for m = 1, 2, . . . until we get a generating
set for Γ[`1] = Tρ.
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6.2.5. Let now hj ∈ Γ be sufficiently many elements, so that they probably gen-
erate Γ although we are not sure of that. By applying the method 6.2.4 to the hj
(which amounts to working in the subgroup generated by the hj instead of Γ), either
we find a generating set of Tρ, in which case we have reached our goal, so we stop;
or we do not, in which case we conclude from 6.2.4 that our hj did not actually
generate Γ, so we generate a few more of them as in 6.2.2 and we try again.

These arguments show that this method quickly leads us to a generating set of Tρ
with high probability. Algorithm 13 is derived from these arguments, with a few
extra optimizations. Namely, given one hj ∈ Γ, instead of blindly computing π(hj) =
[`n−1hj], which is always `-torsion but could be 0, we compute [`o]hj where o is the
largest integer such that the result is non-zero; this provides us with more non-zero
elements of Tρ, which help to obtain a generating set sooner. Besides, by introducing
the zi one by one, and by throwing away the ones that yield a linear form which
is in the span of the forms [·, zi]` corresponding to the previous zi, we ensure that
these forms remain linearly independent.

In detail, at line 7, we have obtained r−1 linearly independent points y1, · · · , yr−1

of Tρ, with yi = `oixi and xi ∈ Γ. After line 18, we have obtained a new nonzero
point yr = `orxr ∈ Tρ; however this point may be linearly dependent with y1, · · · , yr−1,
except of course if r = 1. In order to determine whether this is the case, we ex-
amine these points through the linear forms [·, zi]` for n random points zi ∈ J ,
where initially n = r. The space R we obtain contains the space R′ of linear re-
lations actually satisfied by y1, · · · yr, but may be larger. Since y1, · · · , yr−1 are
linearly independent, R′ has dimension at most 1; so if dimR > 2 then R ) R′,
so we increase the number n of linear forms and start our search for relations over.
If dimR = 1, then either this candidate relation is a false positive, so the condition
at line 30 is not satisfied, and y1, · · · yr are independent so can include yr in our
partial basis of Tρ; or the candidate relation does hold, but then we can still try to
get a new `-power torsion point by dividing the relation R by a power of `. We take
the result of this division as a new x and start the whole process over, except if we
cannot divide R by ` because one of the oi is too small, in which case we give up
the current x and y at line 37 and start over with a new random x ∈ Γ.

The complexity of this algorithm isO
(
(g log q+(a+d) log `)dgω

)
where d = dim ρ,

assuming we have to give up the current x a bounded number of times, and neglecting
the cost of discrete logarithms in µ` and of linear algebra over F`.

Remark 6.5. We can further improve the efficiency of the algorithm if, every time
a new yr has been verified to be linearly independent of y1, · · · , yr−1, we repeatedly
apply the Frobenius Φ to yr and add the corresponding points to our partial basis
of Tρ as long as no linear dependence is detected. Indeed, the application of Φ by
algorithm 8 is very fast. This idea is very similar to that presented in section 6.4
below.

Remark 6.6. In order to be able to use the “linearized” version of the Frey-Rück
pairing, we need Fq to contain the `-th roots of unity (else this pairing would be
trivial anyway). This is often the case, since the determinant of the representation ρ
usually involves the mod ` cyclotomic character due to the existence of the Weil
pairing. In any case we can always extend Fq, but this would considerably slow
down all the computations.
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6.3 The rest of the computation

Now that we have obtained an F`-basis of Tρ ⊂ J(Fq)[`] by algorithm 13, we first
fix an e ∈ N, and we lift our basis into a basis of Tρ ⊂ J(Qq)[`] to accuracy O(pe)
by a combination of algorithms 10 and 11 as explained in remarks 5.6 and 5.2.
We then use algorithm 3 to compute all the points of Tρ, and we evaluate these
points by algorithm 7, still at precision O(pe). All these computations can be mas-

sively parallelized, and their complexity is Õ(ea log p)O(gω+3 + gω+1 log `+ gω`d) bit
operations.

Finally, we form the monic polynomial F (x) whose roots are the values in Qq

that we have just obtained. Since Tρ is globally invariant under Galois, F (x) has
coefficients in Qp, and these coefficients approximate rational numbers within O(pe).
We can identify these rationals by rational reconstruction, provided that e is large
enough.

Remark 6.7. The value of e is chosen from experience; see section 7 below for
concrete examples. If e is too low, rational reconstruction will most likely fail,
but might also produce incorrect results. Therefore the output of our algorithm to
compute ρ is not guaranteed to be correct, and should be certified by methods such
as [Mas18a].

Arakelov theory could in principle provide us with bounds on the height of these
rationals, but in practice these bounds are often extremely pessimistic, as noted
in [Mas13].

6.4 Saving effort thanks to the Frobenius

We have already noted in remark 6.3 that for the efficiency of the computations,
we should if possible choose the prime p so that the degree a = [Fq : Fp] is small.
However, when this is not possible (e.g. because we cannot afford to compute the
local factor Lp(x) for more than a few small p), we can use the fact that a is large
to our advantage.

Indeed, a is the order of Frobenius Φ ∈ Gal(Qq/Qp). Since the evaluation algo-
rithm 7 is (purposely!) Galois-equivariant, it commutes with Φ. This means that
when we want to apply it to all the points of Tρ, we can apply it to only one point in
each orbit of Φ of Tρ, and recover the value of the other points simply by applying Φ
to the result, which is instantaneous. In particular, we only need to compute one
point of Tρ in each orbit instead of all of them, which saves an enormous amount of
time, as the orbits of Φ on Tρ typically have length a.

Similarly, instead of lifting p-adically a whole F`-basis of Tρ by the method
presented in section 5, we can lift a mere F`[Φ]-generating set, after what we can
use algorithm 8 to recover an F`-basis at high p-adic accuracy. The endomorphism
induced by Φ on Tρ is often cyclic; when this is the case, we have to lift only one
point instead of dimTρ.

Remark 6.8. Although these ideas partly negate the inconvenience of working with
a p such that a is large, choosing p so as to minimize a is still always a good idea.
Indeed, the length of an orbit under Φ is at most a, so the idea presented above
divides the amount of work by at most a, whereas the cost of computing in Fq
and Qq is super-linear in a.
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7 Examples

We have implemented the algorithms presented in this paper in the C language using
the [Pari/GP] library, and we have applied them to a few examples. In most cases,
the data we obtained could have been obtained in a much more direct way, but our
goal here is to illustrate our methods.

The times given in this section are all CPU times (as opposed to wall times) on
the author’s laptop. The code is available on the author’s personal web page [Mas]
and as a Github repository [Github].

7.1 A modular representation with particularly little rami-
fication

Let ρ : Gal(Q/Q) −→ GL2(F7) be either of the two mod 7 representations attached
to the newform of weight 2 and level Γ1(13). In [Mas18b, section 6.3] we noted
that these two representations are twists of each other, and that the corresponding
projective representation π : Gal(Q/Q) −→ PGL2(F7) corresponds to a particularly
lightly ramified Galois number field of Galois group PGL2(F7).

As a first demonstration of the methods presented in this article, we are going to
compute ρ and π. We thus take ` = 7 and C the modular curve C = X1(13), whose
Jacobian J is such that J [7] contains an F7-subspace Tρ of dimension 2 affording ρ.
Note that although J splits up to isogeny into the product of two copies of an elliptic
curve defined over the real subfield of the 13th cyclotomic field, this decomposition
does not occur over Q, so computing ρ through J is reasonable.

The [LMFDB] informs us that C is hyperelliptic of genus g = 2 and admits the
minimal model

C : y2 + (x3 + x+ 1)y = x5 + x4.

We use this equation as input data; the fact that C is hyperelliptic and is a modular
curve is completely ignored by our algorithm.

The [LMFDB] also reveals that the only (up to Galois) newform of weight 2 and
level 13 has coefficients in Q(

√
−3), and provides us a few of these coefficients. By

reducing these coefficients modulo one of the primes of Q(
√
−3) above 7, we get for

each prime p 6∈ {7, 13} the characteristic polynomial of the image of the Frobenius
at p by ρ. Thanks to proposition 6.1, we can therefore look for a p such that the
points of Tρ are defined over Qpa for a small a ∈ N.

We thus find that for p = 2 we must take a = 8 or 24, depending on which
of the primes above 7 we consider; for p = 3 we need a = 48 or 16 respectively,
and so on. We spot that for p = 17 we can take a = 6 for either prime above 7,
so we choose to take p = 17 and a = 6; the respective characteristic polynomials
being x2 − 2x − 1 mod 7 and x2 − x − 2 mod 7. Choosing for instance χρ(x) =
x2 − 2x − 1 mod 7 (the other case being completely similar), we can now compute
mod pe a polynomial F (x) of degree 72 − 1 defining ρ for arbitrarily large e ∈ N.

We take e = 32. The initialization of Makdisi’s algorithms to compute in J
at this accuracy takes about 50ms, the computation of an F7-basis of Tρ mod p
takes 3.5s, lifting this basis to precision O(1732) takes 5.3s, computing F7-linear
combinations representing all the orbits of Tρ under the Frobenius takes 1.8s, and
evaluating a map J 99K A1 at these points takes 4.9s. We then form the polynomial
whose roots are these values, and manage to identify its coefficients as rationals
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(experiments show that this would have failed with e = 16 instead of 32). All of
this takes less than 10ms, and we obtain the polynomial

F (x) = x
48 −

190

11
x
47

+
11150

121
x
46 −

70770

121
x
45

+
192146

121
x
44 −

865490

121
x
43

+ 15942x
42 −

3378266

121
x
41

+
7718056

121
x
40 −

7242790

121
x
39

+
161576962

121
x
38 −

327843166

121
x
37

+
1686874038

121
x
36 −

2144483118

121
x
35 −

3729825654

121
x
34

+
18688301594

121
x
33

−
23348747263

121
x
32 −

183640041124

121
x
31

+
334672016908

121
x
30 −

1036146028660

121
x
29

+
124260679100

11
x
28

+
3580808205324

121
x
27

−
32666349081700

121
x
26

+
64676203524796

121
x
25

+
94830437905560

121
x
24 −

423358531106188

121
x
23

+
261293629597764

121
x
22

+
1780617009288708

121
x
21 −

3884461192426292

121
x
20

+
3993080217494308

121
x
19 −

2118273836414700

121
x
18

+
2868502387705524

121
x
17

+
2992809907202955

121
x
16 −

8017240457300370

121
x
15

+
1032724415961478

121
x
14

+
17530455675901702

121
x
13

+
938376918522746

121
x
12

−
21242403800528794

121
x
11 −

6765741375874194

121
x
10

+
812183325256186

11
x
9
+

17495913080481536

121
x
8 −

5797799442355694

121
x
7

−
14434584737735526

121
x
6
+

1659062818893114

121
x
5
+

5000613835008606

121
x
4 −

1428209615195030

121
x
3 −

15369117321210

11
x
2

+
76223729308434

121
x +

18369946454903

77

which is irreducible over Q and defines a number field of discriminant −7471335.
This is a strong hint that we have correctly identified the coefficients of F (x), and
this can be confirmed rigorously by the methods presented in [Mas18a].

By forming symmetric combinations (in this case, products) of the roots of F (x)
along vector lines in Tρ, we get the polynomial

G(x) = x
8
+

86

11
x
7 −

35378

11
x
6 − 28694x

5
+

26301780

11
x
4 −

729484894

11
x
3
+ 2233638278x

2 −
410091777286

11
x +

18369946454903

77

which is squarefree and therefore defines the projective representation π. Using [Pari/GP]’s
function polredabs to find a canonical polynomial whose root field is the same as
that of G(x) yields the polynomial

Gred(x) = x8 − x7 + 7x6 + 13x− 13

whose Galois group is indeed PGL2(F7). As predicted in [Mas18b, section 6.3], the
root discriminant of the splitting field of this polynomial is 77/8135/6 = 27.269 . . . ,
which is remarkably low. Besides, half of the coefficients of this polynomial are zero;
we had encountered the same mysterious phenomenon in [Mas18b, section 5.1], and
we still have no explanation.

Remark 7.1. Of course, since C happens to be a modular curve, we could also have
computed these representations by the techniques presented in [Mas13]. This would
actually have taken longer, mainly because of the computation of the periods of the
modular curve to high precision, and also because since these methods work over C,
we do not benefit much form the speedup introduced in section 6.4 as complex
conjugation has order only 2.

7.2 The torsion of the Klein quartic

Since it is overkill to use Makdisi’s algorithms with hyperelliptic curves (where
Mumford coordinates would be much more efficient), and in order to demonstrate
the flexibility of our methods, we now experiment with the Klein quartic, given by
the affine plane model

C : x3y + y3 + x = 0.

This curve is isomorphic to the modular curve X(7) over Q, but again our algorithm
completely ignores this fact. It has genus g = 3, and according to [Elk99, section 2.3]
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its Jacobian J is isogenous over Q to the product of three copies of the elliptic

curve X0(49), which has CM by Z
[

1+
√
−7

2

]
. However, this decomposition does not

occur over Q, since not all local factors Lp(x) of its L-function are perfect cubes.
Besides, C dominates X0(49), so the Galois representation afforded by the `-torsion
of X0(49) also occurs in J [`]. Let us take ` = 5 for instance. By point counting, we
spot that for p = 19, the local factor Lp(x) of C factors as

L19(x) = (x2 + 19)(x4 − 19x2 + 192),

so the Galois sub-module T of J [5] on which the Frobenius at 19 has character-
istic polynomial x2 + 19 must be isomorphic to the 5-torsion of X0(49). Besides,
luckily x2 + 19 ≡ x2 − 1 mod 5, so we can take a = 2 only, i.e. the points of
this sub-module are defined over Q192 . Finding two points of J(F192) forming
an F5-basis of this sub-module takes 2.3s, lifting this basis to precision O(1932)
takes 4.5s, forming F5-linear combinations representing all the orbits of T under the
Frobenius takes 1.2s, and evaluating the resulting points takes 3.4s. This 19-adic
accuracy is sufficient to identify the polynomial

F (x) = x
24 −

307088989

45285641
x
23

+
650200367

45285641
x
22

+
871861629

45285641
x
21 −

8986152651

45285641
x
20

+
28369847905

45285641
x
19 −

57494206833

45285641
x
18

+
85829376881

45285641
x
17 −

99861285810

45285641
x
16

+
93389301219

45285641
x
15 −

71688483976

45285641
x
14

+
46005140069

45285641
x
13 −

25177926620

45285641
x
12

+
12024739657

45285641
x
11 −

5124720540

45285641
x
10

+
1973054346

45285641
x
9 −

682322926

45285641
x
8
+

207466033

45285641
x
7 −

53995200

45285641
x
6
+

11728577

45285641
x
5

−
2073323

45285641
x
4
+

288262

45285641
x
3 −

29761

45285641
x
2
+

2049

45285641
x−

361

226428205

Thanks to [Pari/GP], it is easy to check that this polynomial is irreducible over Q
and defines the field of definition of a point ofX0(49)[5]. Of course, such a polynomial
could have been obtained much more efficiently by working directly with the elliptic
curve X0(49) instead of C!

Given a prime ` , we can also compute the representation

ρ` : Gal(Q/Q) −→ GSp6(F`)

afforded by the whole of J [`]; however this yields polynomials of degree `6 − 1, so
we limit ourselves to ` 6 3.

Let us start with ` = 2. By point counting, we find that the local factor at p = 5
is L5(x) = x6 + 125, which factors mod 2 as (x+ 1)2(x2 + x+ 1)2; therefore J [2] is
defined over Q56 , so we take p = 5 and a = 6. Let Φ be the Frobenius at 5. Getting
an F2-basis of J [2] over F56 and finding the matrix of Φ with respect to it takes 20s;
the rational canonical form of this matrix is the cyclic permutation matrix

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ∈M6(F2),

which shows that the Φ-module J [2] is isomorphic to F2[C6], and incidentally that the
isogeny J ∼ X0(49)3 cannot be defined over Q. Since J [2] is a cyclic F2[Φ]-module,
we can find a lift of this basis to precision O(564) by lifting a single well-chosen point
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and taking the translates of the result under Φ; this takes 8.4s. Forming F2-linear
combinations representing all the Φ-orbits of in J [2] \ {0} takes 4s, and evaluating
the resulting points takes 11.2s. It then takes less than 0.1s to compute and identify
the polynomial

F (x) = x
63 − 161x

60 − 1197x
58 − 9177x

57 − 1298x
56

+ 121520x
55

+ 2898448x
54

+ 2416904x
53

+ 4333952x
52 − 168699608x

51

−476734440x
50 − 339930164x

49
+ 446081888x

48
+ 30281870248x

47 − 4473058548x
46

+ 205353521016x
45 − 707077852236x

44

+1283224964x
43 − 4774623916424x

42
+ 2627805825680x

41
+ 9669830893184x

40
+ 38725730084552x

39
+ 84184385317648x

38

−207758524883784x
37 − 28804601640024x

36 − 1138175980440698x
35

+ 1501648226684368x
34

+ 413550524113048x
33

+987469333006898x
32

+ 1602100443930840x
31 − 10647759185665742x

30
+ 16341775658984090x

29 − 4370878629111660x
28

−20130340141861936x
27

+ 7358201939838288x
26 − 21804407903519528x

25
+ 57105590161516512x

24 − 1973641573147048x
23

−80209977632969240x
22

+ 122014915556934988x
21

+ 97865010867835456x
20 − 13990286302239912x

19
+ 95842501513026044x

18

+107824065162314088x
17

+ 102967780530998516x
16

+ 81363980423822628x
15 − 46964208347978888x

14 − 11842872637248016x
13

+34046835258483488x
12 − 61791525835015592x

11 − 151364668861661808x
10 − 87421807751514936x

9 − 21557279135069608x
8

−71522018862910623x
7 − 67396074567438960x

6 − 27838001535856792x
5 − 13272758366940569x

4 − 15251476649272248x
3

−2716106249233965x
2
+ 4090304480390807x + 1985141227354766

which is squarefree and factors over Q into one factor of degree 1, one of degree 2,
two of degree 3, and nine of degree 6.

It turns out that these factors all define a subfield of the 7th cyclotomic field Q(ζ7),
so, assuming that we have correctly identified the coefficients of F (x), this means
that the field of definition of J [2] is Q(ζ7). This is an Abelian number field, and
since 5 is a primitive root mod 7, its Galois group is generated by Φ, the Frobenius
at 5. Therefore, the image of ρ2 is cyclic of order 6 and generated by ρ2(Φ), which
is the matrix displayed above.

Finally, we redo the same computation, but with ` = 3. Finding a
prime p 6∈ {3, 7} such that J [3] is defined over a small extension of Qp is not
straightforward since the local factor Lp(x) is always a cube mod 3. In view of the
fields in presence, we try p = 43 since it is 1 both mod 3 and mod 7, and indeed a
little experimentation shows that J [3] is defined over Q434 .

Getting an F3-basis of J [3] over F434 takes 34s, lifting this basis to precisionO(43256)
takes 120s, forming F3-linear combinations representing the orbits under the Frobe-
nius takes 4m, and evaluating the resulting points takes 9m20s. We obtain a poly-
nomial F (x) of degree 728 whose coefficients are rationals with numerators of up
to 163 digits and always the same 133-digit denominator up to small primes, and
which is squarefree and factors over Q into one factor of degree 8, four of degree 24,
and thirteen of degree 48.

These factors all define subfields of a number field L of degree 48 which is Galois,
totally imaginary, and has discriminant 342744 (in particular its root discriminant
is 37/8711/12 = 15.565 · · · , which is very close to the record given in table 3 p. 134
of [Odl90]).

Thanks to [Magma] and [GAP18], we can determine that its Galois group is a
non-Abelian nilpotent group of order 48, isomorphic to the direct product of a cyclic
group of order 3 and of the normalizer of a non-split Cartan of GL2(F3). This is
not surprising, since the image of the mod 3 representation attached to the elliptic
curve X0(49) is precisely this normalizer. In fact, L turns out to be the compositum
of the real subfield Q(ζ7)+ of the 7-th cyclotomic field and of the field of definition
of the 3-torsion of X0(49). Besides, the factor of degree 8 of F (x) defines the field of
definition of a point of X0(49)[3], and the factors of degree 24 define the compositum
of this field and of Q(ζ7)+.
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7.3 A higher genus example

Finally, in [Mas19], we used the methods presented in this article to compute
a GL3(F9)-valued Galois representation afforded by a 6-dimensional F3-subspace
of the 3-torsion of the Jacobian of a curve of genus g = 7. Unlike the previous
computations that took place on the author’s laptop, this computation took place
on a computing cluster with 32 cores provided by Warwick mathematics institute.
It only took about one hour of wall time thanks to parallelisation, which demon-
strates that our methods are also suitable to higher genera. The CPU times were
as follows: getting a basis of this 6-dimensional subspace of J(Fq)[3] (with q = 1114

in this case) took about 2h, lifting this basis to p-adic accuracy O(111024) took 3.5h,
forming linear combinations of these points representing all the 104 orbits under the
Frobenius at p = 11 took 6h, and evaluating these points took 12.5h.

It is interesting to note that even for such a large genus, the step of highest
complexity, namely lifting p-adically the torsion points by a combination of algo-
rithms 9, 10, and 11 whose complexity is O(gω+3), is actually less time-consuming
than the subsequent steps, even though their complexity is only O(gω). This is
not so surprising, since the O(gω+3) complexity is only due to the very last lines of
algorithm 9.

In view of these encouraging results, we plan to use this new p-adic method to
try to beat the genus records set in [Mas13] for Galois representations attached to
modular forms in the near future.
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