
EXPLICIT COMPUTATION OF GALOIS REPRESENTATIONS

OCCURRING IN FAMILIES OF CURVES

Abstract. In view of computing mod ℓ Galois representations occurring in

the étale cohomology of surfaces over Q, we present a method to compute divi-

sion polynomials of Jacobians of curves over the rational fraction field Q(t). We
demonstrate the use of this method on a couple of examples. We thus obtain

explicit families of Galois representations over P1
Q, and we study their degener-

ation at values of t at which the curve has bad reduction. We use these data to

propose a conjectural geometric explanation extending the Néron-Ogg-Shafarevich
criterion for the ramification of these degenerate Galois representations.
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1. Introduction

Let S be an algebraic surface defined over Q, and let ℓ ∈ N be a prime num-
ber. The purpose of this article is twofold: to describe a practical algorithm to
compute explicitly the mod-ℓ Galois representations occurring in the étale coho-
mology space H2

ét(SQ,Z/ℓZ) of S, and to formulate a conjectural generalisation of

the Néron-Ogg-Shafarevich criterion [ST68] to the degenerate Galois representa-
tions which we obtain as a byproduct of this algorithm (our motivation for this is
explained in Remark 1.4 below).

1.1. First goal: Computing with the étale cohomology of surfaces. More
specifically, suppose that H2

ét(SQ,Z/ℓZ) contains a Galois-submodule which affords
a mod ℓ Galois representation ρ that we wish to compute explicitly. By this, we
mean computing a polynomial in Q[x] which encodes ρ in the following sense:

Definition 1.1. Let K be a number field, and let ρ : Gal(K/K) −→ GL(Vρ) be a
mod ℓ Galois representation, where Vρ is an Fℓ-vector space of finite dimension. We
say that a separable polynomial F (x) ∈ K[x] encodes ρ if we are given an explicit
bijection between Vρ \ {0} and the roots of F (x) in some extension Ω of K over
which F (x) splits completely, in such a way that the Galois action on the roots
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of F (x) matches that on Vρ. In particular, the splitting field of F (x) then agrees

with the number field K
Ker ρ

cut out by ρ.

In [Mas22, 2], we sketched a method to compute ρ ⊂ H2
ét(SQ,Z/ℓZ) based on

dévissage [SGA4 1
2 , 3.4], and which may be informally summarised as follows. Pick

a proper dominant morphism π : S −→ B from S to a curve B over Q, and
write Sb for the fibre of π at a point b ∈ B. Roughly speaking, the Leray spec-
tral sequence [MilEC, 12.7] attached to π then shows that H2

ét(SQ,Z/ℓZ) is made

up of Hp
ét

(
BQ,H

q
ét(Sb,Z/ℓZ)

)
for p + q = 2. Since the terms for p = 0, q = 2

and for p = 2, q = 0 consist of uninteresting bits, we can expect that ρ occurs
in H1

ét

(
BQ,H

1
ét(Sb,Z/ℓZ)

)
. As B and the Sb are curves, and as the H1

ét of a

curve is essentially the torsion of its Jacobian (see the first part of Theorem 1.2
below for a precise statement), it is thus reasonable to hope to compute com-
pute ρ ⊂ H2

ét(SQ,Z/ℓZ) by:

(1) Computing the family of Galois representations parametrised by b ∈ B
afforded by the ℓ-torsion of the Jacobian of the fibre Sb,

(2) Gluing these data into an explicit model of a cover C −→ B of curves,
(3) Catching ρ in the ℓ-torsion of the Jacobian of the curve C.

Strategy 1.1: Computing in the H2
ét of surfaces by looking at the torsion of Jacobians

of curves.

The situation is illustrated on Figure 1.1.

S

B

π

C

Figure 1.1: The surface S with some of the fibres Sb of π. The rectangles above
them represent the Jacobian of these fibres, inside which the red dots repre-
sent ℓ-torsion points. These points define a curve C whose Jacobian should contain ρ
in its ℓ-torsion.
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More precisely, we have the following result:

Theorem 1.2. Given an Fℓ-Galois-module M and an integer n ∈ Z, write M(n)
for the twist of M by the n-th power of the mod ℓ cyclotomic character.

(1) Let X be a nonsingular, geometrically irreducible curve over a number
field K, and let J be the Jacobian of the completion of X. If X is complete,
then H1

ét(XK ,Z/ℓZ) ≃ J [ℓ](−1) as Galois modules. If X is not complete,

then H1
ét(XK ,Z/ℓZ) is an extension of J [ℓ](−1) by copies of (Z/ℓZ)(−1).

(2) Suppose ρ is a mod ℓ Galois representation contained in H2
ét(SQ,Z/ℓZ) (up

to semi-simplification). Let B′ = B \ Z, where Z ⊂ B is the locus of
bad fibres of π. Assume that ρ has no Jordan-Hölder components of the
form (Z/ℓZ)(n) for any n ∈ Z, and no component in common with η(−1),
where η is the mod ℓ permutation representation induced by the Galois
action on the geometrically irreducible components of the bad fibres of π.
Then ρ is also contained (up to semi-simplification) in H1

ét(CQ,Z/ℓZ)(−1),

where C is the completion of the cover of B′ formed by the nonzero ℓ-torsion
points of the Jacobian of the Sb.

Part 1 is standard (cf. [MilEC, 14.2,14.4,16.2]), and part 2 is [Mas22, Thm 7].
In particular, if ρ satisfies the assumptions of part 2, and if C is geometrically
irreducible, then ρ is found (up to twist) in the ℓ-torsion of the Jacobian of C.
More generally, if C is not geometrically irreducible, consider a Galois number
field K ⊂ Q such that the geometrically irreducible components Ci of C are defined
over K; then ρ will be found in the induction to Gal(Q/Q) of the representation
of Gal(Q/K) afforded by the ℓ-torsion of the Jacobians of the Ci.

Let us now explain in more detail how to turn these observations into an algo-
rithm to compute ρ explicitly, assuming for simplicity that C is geometrically irre-
ducible. In [Mas19], we described an algorithm which, given a proper, nonsingular,
and geometrically irreducible curve C over a number field1 K and a prime ℓ ∈ N,
computes what may be called an ℓ-division polynomial RC,ℓ(x) ∈ K[x] of C, that
is to say a polynomial which encodes the representation afforded by the ℓ-torsion
of the Jacobian J of C in the sense of Definition 1.1. This algorithm is also capa-
ble of computing the subrepresentation afforded by a Galois-submodule V of J [ℓ],
provided that there exists a prime p ∤ ℓ of K where C has good reduction and
such that V ⊂ J [ℓ] may be characterised by the characteristic polynomial of Frobp
acting on V .

Suppose for the sake of the exposition that we are given an equation f(x, y, t) ∈
Q[x, y, t] such that our surface S is the desingularisation of the projective closure
of the patch defined by f(x, y, t) = 0. It is then natural to choose B = P1

Q and π
the projection (x, y, t) 7→ t, thereby viewing the surface S as a curve S over Q(t).
Suppose furthermore we generalised our division polynomial algorithm [Mas19] to
curves overQ(t). We would then be able to compute a division polynomialRS,ℓ(x, t) ∈
Q(t)[x] for S, whose specialisation RS,ℓ(x, t0) ∈ Q(t0)[x] at any good fibre t =
t0 ∈ B of π would an ℓ-division polynomial of the fibre St0 . Then the equa-
tion RS,ℓ(x, t) = 0 would define the curve C such that ρ occurs (up to twist by
the cyclotomic character) in the ℓ-torsion of the Jacobian of C, so that we may
compute ρ by applying the original version of [Mas19] to C, by isolating the twist

1At present, this algorithm is only implemented for K = Q, but its generalisation to number fields
is straightforward.
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of ρ in the Jacobian JC of C from the knowledge of the characteristic polynomial
of ρ(Frobp) where p is as described above (cf. [Mas22] for a successfully worked out
example of this approach).

In particular, we would not even need to compute all of the ℓ2gC points of JC [ℓ],
which would be impractical even for ℓ = 2 as soon as the genus gC of C is moderately
large, but only the ℓdeg ρ points of the subspace affording the twist of ρ contained
in JC [ℓ]. On the other hand, this method forces us to compute all the ℓ-torsion
points of the Jacobian of S in order to get an equation for C, and this therefore
only applicable when the genus of S is reasonably small.

The first purpose of this article is to explain how [Mas19] can indeed be gen-
eralised to curves over Q(t), thereby making it theoretically possible to compute
explicitly mod ℓ Galois representations which occur in the H2

ét of surfaces.

Remark 1.3. Very general but unfortunately impractical algorithms to compute
with étale cohomology are presented in [MO15] and [PTvL15]. In contrast, our
goal is to obtain a practical method for the specific case of the H2

ét of surfaces.

We show how [Mas19] can be generalised to curves over Q(t) in Section 2.
Since [Mas19] requires the curve to be given as a Riemann-Roch space whereas
the plane equation RS,ℓ(x, t) = 0 is likely to be badly singular, in Section 3 we
briefly recall how to perform various computations with plane algebraic curves, in-
cluding the determination of the genus of the normalised curve and the calculation
of Riemann-Roch spaces.

As an application, in Section 4 we compute division polynomials RS,ℓ(x, t) for
three curves S over Q(t), of respective genera 1, 2, and 3. This makes it possible,
in principle, to compute with the H2

ét of the corresponding surfaces over Q; but
unfortunately, the equations which we obtain for the curves of genera 2 and 3 are
too complicated for this to practical.

1.2. Second goal: Understanding geometrically the ramification of de-
generate representations attached to bad fibres. Even when we are unable
to complete the calculation of the original Galois representation ρ ⊂ H2

ét(SQ,Z/ℓZ),
we still obtain a division polynomial RS,ℓ(x, t) which is worthy of our attention, as
it encodes a family of Galois representations over B = P1

Q.
In this family, good fibres St0 of π : S −→ B correspond to representations

which simply describe the Galois action on the ℓ-torsion of the Jacobian of St0 ,
and whose ramification can therefore be predicted by the Néron-Ogg-Shafarevich
criterion [ST68]. In contrast, the degenerate representations corresponding to the
bad fibres of π are more intriguing. In Section 5, we thus formulate a conjec-
tural geometric explanation generalising the Néron-Ogg-Shafarevich criterion for
the ramification of these degenerations, which we support by analysing the data
obtained in Section 4.

Remark 1.4. The reason why this generalisation is required is that Néron-Ogg-Shafarevich
only applies to models of Abelian varieties over a 1-dimensional basis, whereas our
ramification considerations mean we are implicitly working over the basis P1

Z which
has two dimensions, namely a geometric one (in t) and an arithmetic one (in the
primes of Q). In particular, we do not have a satisfying theory of Néron models
at our disposal as far as the author is aware. The fact that we are in uncharted
territory is the reason that motivates us to make an experimental study of these
degenerate representations the second goal of this article.
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2. Division polynomials over Q(t)

Let still ℓ ∈ N be prime. The purpose of this Section is to present algorithms to
compute ℓ-division polynomials for Jacobians of curves over Q and Q(t).

2.1. Sketch of the algorithm over Q. In [Mas19], we presented the following
p-adic algorithm to compute an ℓ-division polynomial of the Jacobian of a curve C
over Q:

(1) Pick a prime p ̸= ℓ of good reduction of C. Determine a ∈ N such that
the ℓ-torsion of the Jacobian J of C is defined over Fq, where q = pa.

(2) Generate points of J(Fq)[ℓ] which span J [ℓ] as an Fℓ[Frobp]-module.
(3) Lift these points to J(Zq/p

e)[ℓ], where Zq is the ring of integers of
the unramified extension of Qp with residue field Fq, and e ∈ N is an
accuracy parameter.

(4) Construct an evaluation map α ∈ Q(J).

(5) Expand F̃ (x) =
∏

0̸=t∈J[ℓ]

(
x − α(t)

)
∈ (Z/peZ)[x], and identify it as an

element F (x) of Q[x].

Algorithm 2.1: Division polynomial of a curve over Q.

The idea is thus to pick an auxiliary prime p, and to rely on the fact that J [ℓ] is
étale at p to construct p-adic approximations of points of J [ℓ].

The polynomial F (x) is then an ℓ-division polynomial of C in the sense of Defini-
tion 1.1. This supposes that α is defined and injective on J [ℓ]; if this is not the case,
we start over with another α. This also supposes that the accuracy parameter e is
large enough to identify F (x) from its mod pe approximation F̃ (x). In particular,
the correctness of this method is not rigorously guaranteed, although this could
be done by confirming that the elements of J(Zq/p

e)[ℓ] are indeed p-adic approx-
imations of ℓ-torsion points defined over the stem fields of the irreducible factors
of F (x). Besides, in most cases, one easily convinces oneself beyond reasonable
doubt that the output F (x) is correct, e.g. by checking that it has the appropriate
Galois group and ramification.

In order to compute in J , this algorithm relies on Makdisi’s algorithms [KM04,
KM07]. These algorithms were originally designed to work over a field, so in [Mas19]
we generalised them to work over a local ring such as Zq/p

e. These algorithms
also require the knowledge of an explicit basis of a Riemann-Roch space of C of
high-enough degree so as to represent C internally (cf. the bottom of page 1421
in [Mas19]), so we will explain in Section 3 below how such a basis may be computed
from a (possibly singular) plane model of C.

2.2. Sketch of the algorithm over Q(t). By analogy with the embedding of Q
into its completion Qp, it is natural to extend Algorithm 2.1 to curves over Q(t)
by embedding Q(t) into the p-adic Laurent series field Qp((t)). This leads to the
following idea to compute an ℓ-division polynomial of a curve C over Q(t):
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(1) If required, shift the parameter t so that C has good reduction C0 at t =
0. Pick a prime p ̸= ℓ of good reduction of C0, and determine a ∈ N
such that the ℓ torsion of the Jacobian J0 of C0 is defined dover Fq,
where q = pa.

(2) Generate points of J0(Fq)[ℓ] which span J0[ℓ] as an Fℓ[Frobp]-module.
(3) Lift these points to J (R)[ℓ], where J is the Jacobian of C and R is a

finite quotient of the formal power series ring Zq[[t]].
(4) Construct an evaluation map α ∈ Q(t)(J ).

(5) Expand F̃ (x) =
∏

0̸=t∈J[ℓ]

(
x − α(t)

)
∈ R[x], and identify it as an ele-

ment F (x) of Q(t)[x].

Algorithm 2.2: Division polynomial of a curve over Q(t).

This assumes that we manage to extend Makdisi’s algorithms to finite quotients
of Zq[[t]]. This is actually not an issue, because the extension which we designed
in [Mas19] works with any finite local ring R over which one can perform linear
algebra in “good reduction cases” in the following sense:

Definition 2.1. Let R = O/a be finite quotient of a local domain O. Let K be the
fraction field of O, and let k be the residue field of O. We say that we can perform
linear algebra over R in cases of good reduction if, given the reduction mod a of a
matrix A over O such that the rank of A is the same over K and over k, we can
compute an approximation in O/a of a K-basis of the kernel of A.

Similarly, the construction [Mas19, 2.2.3] of evaluation maps α generalises to
Jacobians of curves over Q(t) without change.

Finally, we can identify the coefficients of F̃ (x) as elements of Q(t) by a combina-
tion of p-adic rational reconstruction (as we did in the original version of [Mas19])
and of Padé approximants (see Remark 2.2 below for practical details).

2.3. Lifting torsion points (p, t)-adically. In order to turn these ideas into a
proper algorithm to compute division polynomials over Q(t), we still must ex-
plain what kind of finite quotients R of Zq[[t]] we will work with, and how to lift
an ℓ-torsion point from Fq to R.

A first natural choice for R would be Re = Zq[[t]]/m
e, where m = (p, t) is the

maximal ideal of Zq[[t]] and e ∈ N is an accuracy parameter as in Algorithm 2.1.
This choice may be appealing at first, as it would give us the hope of being able
to raise the p-adic and the t-adic accuracy of torsion points simultaneously; but
unfortunately, we will see below that Re having Krull dimension 2 actually results
in an algorithmic obstacle to lifting torsion points. Furthermore, elements of Re

are of the form
∑

j<e λjt
j where λj ∈ Z/pe−jZ is known with poor accuracy for

large j; as a result, in F̃ (x), the coefficients of high powers of t would be known
with poor p-adic accuracy, which would force us to increase the value of e so as
to identify them, so we would end up lugging around high powers of t throughout
the calculation only to drop them at the final stage since they are p-adically too
imprecise to be identified as rational numbers, and thus result in a major waste of
time.
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We have therefore decided to work with the quotientsR = Re,h = (Zq/p
eZq)[t]/(t

h),
where h ∈ N is a second accuracy parameter. The introduction of this new pa-
rameter grants us the flexibility of setting the p-adic accuracy independently from
the t-adic one, which turns out to be useful in practice. Furthermore, this makes
it possible to generalise our algorithm to lift torsion points. In order to see why,
recall how we proceeded over Q in [Mas19]:

Let O = Zq, ϖ = p, m = ϖO, K = Qq, and let J be the Jacobian of a curve
over K which has good reduction at m. Given e ∈ N, a point x ∈ J(O/me) is
represented in Makdisi’s algorithms (as generalised in [Mas19]) by a matrix Wx

with entries in O/me; but conversely, most such matrices do not represent any
point of J . We thus began with an algorithm [Mas19, Algorithm 9] which, given an
integer e ∈ N and a matrix Wx representing x ∈ J(O/me), computes a lift of Wx

to O/m2e which represents a lift of x to J(O/m2e).
Due to the tangent space of J at x, this lift of x is not unique, and indeed

this algorithm can return several matrices representing different random lifts of x
if required. But this also means that even if x was ℓ-torsion in J(O/me), none of
these lifts to J(O/m2e) are guaranteed (nor even likely) to be ℓ-torsion.

In order to circumvent this problem, we showed how to construct an algebraic
“coordinate chart” κ : U ↪→ On, where n is a fixed integer not smaller than the
genus g of the curve. This chart is defined on an m-adic neighbourhood U of the
origin 0 ∈ J(O), and turns the modme representation in Makdisi form of a point x ∈
U into a vector κ(x) ∈ (O/me)n such that for all e′ ⩽ e, κ(x) = 0 mod me′ if and

only if x = 0 in J(O/me′). As O is furthermore principal with uniformiser ϖ = p,
we then designed a second algorithm [Mas19, Algorithm 11], which computes the
unique lift to J(O/m2e)[ℓ] of a point x ∈ J(O/me)[ℓ] as follows:

(1) Use algorithm [Mas19, Algorithm 9] to generate g + 1 matri-
ces W0, · · · ,Wg representing random lifts x0, · · · , xg of x to J(O/m2e).

(2) For each of these lifts, compute the vectors ki =
1

ϖe
κ([ℓ]xi) ∈ (O/me)n.

(3) Try to find scalars λ1, · · · , λg ∈ O/m2e such that
∑g

i=0 λiki = 0 mod
me and

∑g
i=0 λi = 1 mod m2e, and return the matrix

∑g
i=0 λiWi.

Algorithm 2.3: Lifting an ℓ-torsion point in Makdisi form.

The idea is that with high probability, the lifts xi form an affine coordinate frame
of the tangent space of J at x, which guarantees the existence and uniqueness of
the λi (and otherwise, we start over with other random lifts xi). Note that since x
is assumed to be ℓ-torsion mod me, we have κ(xi) = 0 mod me for all i, so division
by ϖe does result in the ki being integral. This division is essential so that we can
find the λi by solving a linear system over the local ring O/m2e, since it ensures
that this system will have good reduction in the sense of Definition 2.1 provided as
long as the xi do form an affine frame.

Let us now see how to generalise Algorithm 2.3 to the case where O = Zq[[t]. We
can now see why working with quotients of Zq[[t]] of the form Zq[[t]]/(p, t)

e would be
an issue: In step 2, we would obtain vectors κ([ℓ]xi) with entries in (p, t)e/(p, t)2e,
but since the ideal (p, t) is not principal, we would not be able to renormalise
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the linear system defining the λi into a system of good reduction in the sense of
Definition 2.1.

In contrast, by working with quotients of the form (Zq/p
eZq)[t]/(t

h), we can
generalise Algorithm 2.1 as follows: given a point x ∈ J0(Fq)[ℓ], we can first lift
it p-adically to J(Zq/p

e)[ℓ] by using the original version of Algorithm 2.3 as de-
scribed in [Mas19], and then, we can lift this lift t-adically to J

(
(Zq/p

eZq)[t]/(t
h)
)
[ℓ],

by applying Algorithm 2.3 with O = (Zq/p
eZq)[[t]] and ϖ = t. Indeed, even

though m = tO is no longer maximal, the point is that the quotient O/mh =
(Zq/p

eZq)[t]/(t
h) is still a local ring with “residue ring” k = Zq/p

e which is still
local, so that our generalisation of Makdisi to local rings is able to handle working
over it.

We are thus able to lift torsion points from J0(Fq)[ℓ] to J
(
(Zq/p

eZq)[t]/(t
h)
)
[ℓ],

and thus to extend our method [Mas19] to curves defined over Q(t).

Remark 2.2. In practice, when we identify elements c ∈ Q(t) from an approxima-
tion in (Z/peZ)[t]/(th) at the end of Algorithm 2.2, rather than first identifying c
as an element of Q[t]/(th) by p-adic rational reconstruction and then as an element
of Q(t) by Padé approximants over Q, it is much more efficient to proceed in the re-
verse order, that is to say to first use Padé approximants over Qp so as to identify c
as an element of Qp(t) whose coefficients are known mod pe, and then to recon-
struct these coefficients as rational numbers. The reason for this is that unless h
is quite small, the Taylor coefficients of c up to O(th) will typically have a very
large arithmetic height, so that identifying them would require the p-adic precision
parameter e to be very high, which would drastically reduce the execution speed
of the whole of Algorithm 2.2. For example, in Section 4.3 below, identifying the
coefficients of a 2-division polynomial of a family of plane quartics requires h = 128,
and experimentation has shown to us that this in turn requires e = 4096 with the
first method, but only e = 128 with the second one.

3. Computing with plane algebraic curves

When we apply Strategy 1.1, on both occasions when we use our algorithm to
compute an ℓ-division polynomial of a curve (first over Q(t) with Algorithm 2.2, and
then overQ with Algorithm 2.1), that curve is given to us by a plane equation, which
is possibly singular. However, as explained in the previous Section, our ℓ-division
polynomial algorithm relies on Makdisi’s algorithms, which require the curve to be
represented by a Riemann-Roch space of high-enough degree.

The purpose of this Section is therefore to explain how one may perform ex-
plicit computations, such as determining the genus and computing Riemman-Roch
spaces, with curves given by possibly singular plane models. Such functionalities
are already available in some computer algebra packages such as [Magma], but our
implementation of the ℓ-division polynomial algorithm is based on [Pari/GP], and
converting data from [Magma] to [Pari/GP] is tedious and tends to break the flow
of automation. We have therefore implemented our own package to compute with
plane algebraic curves in [Pari/GP], in a way which is tailored towards our needs.

3.1. Representing the desingularised curve. Fix a ground field K over which
one can algorithmically factor polynomials and perform linear algebra. For exam-
ple, K could be Q or Q(t). We also assume that K has characteristic 0, although
this is hypothesis is not essential (see Remark 3.4 below).
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Suppose we are given an irreducible polynomial f(x, y) ∈ K[x, y]. It defines

an affine curve C over K, but instead one typically wants to work with C̃, the
desingularisation of the projective completion of C. Nonsingular points of C may
be identified with points of C̃, so we only need a specific representation for points
of C̃ at infinity or above singular points of C.

One possibility would be to construct an explicit model of C̃ made up of several
charts in a higher-dimensional ambient space; however, this approach would lead to
Gröbner bases calculations in many variables, which could be very slow. Therefore,
we have instead decided to represent these points of C̃ by formal series parametri-
sations. For instance, if f(x, y) = xy + · · · so that C has a node at the origin, the

two points of C̃ corresponding to the two branches of this node can be represented
by parametrisations of the form

x = t, y = t+O(t2) and x = t, y = −t+O(t2).

In order to compute such parametrisations, we can take advantage of the fact
that the fieldK{{x}} of Puiseux series overK contains an algebraic closure ofK(x):
for each root y =

∑
m⩾m0

amxm/e ∈ K{{x}} of f(x, y) ∈ K(x)[y], we obtain the
parametrisation

(3.1) x = te, y =
∑

m⩾m0

amtm ∈ K((t)).

One might thus hope for a bijection between the points of C̃ above x = 0 and
parametrisations of the form x = te, y ∈ K((t)) with x and y not both series
in tm for any m ⩾ 2; but unfortunately, this is not the case, because (3.1) can be
reparametrised as

x = t′e, y =
∑

m⩾m0

ζmamt′m

where t = ζt′ for any e-th root of unity ζ ∈ K. In particular, with this approach,
there would be no hope to match the extension of K generated by the coefficients aj
with the field of definition of the corresponding point2.

Fortunately, Duval [Duv89] has shown that these problems can be circumvented
by allowing parametrisations of the form x = bte, y ∈ K((t)) where b ∈ K is a
constant:

Theorem 3.2. Let f(x, y) ∈ K[x, y] be irreducible of degree n in y. There exists a
finite set of parametrisations

x = bjt
ej , y =

∑
m⩾mj

aj,mtm

where for each j, the bj and the aj,m lie in K and span a finite extension Lj of K,

and such that the n roots of f in K{{x}} are obtained without repetition as

y =
∑

m⩾mj

aσj,m(βx1/ej )m

where σ ranges over the K-embeddings of Lj into K and β ranges over {β ∈
K |β−ej = bσj } (so that t = βx1/ej is what one obtains when solving x = bjt

ej

for t).

2Unless of course K happens to contain the roots of unity of all orders, which typically will not be

the case for the applications which we have in mind since we will be working over K = Q or Q(t).
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This means that we have a Galois-equivariant bijection between this set of
parametrisations and the set of places of the function field K(C) = K(x)[y]/f(x, y)

of C above x = 0, and therefore with the points of C̃ above x = 0. In particular,
we have ∑

j

ejfj = n

where the fj = [Lj : K] are the residue degrees and the ej are the ramification

indices, so that the Lj are the fields of definition of the corresponding points of C̃,
and that the

(3.3)
∏

σ:Lj ↪→K

∏
β−ej=bj

y −
∑

m⩾mj

aσj,m(βx1/ej )m


are the irreducible factors of f(x, y) over K((x)). Note the analogy with the deter-
mination of the decomposition of a prime number p in a number field by studying
the factorisation over Qp of a polynomial defining that number field.

Duval explains that these parametrisations can be computed as follows:

(1) Draw the Newton polygon of f(x, y), that is to say the lower convex hull
of the points (i, j) ∈ Z2 such that the coefficient ai,j of y

ixj in f(x, y) =∑
i,j ai,jy

ixj is nonzero.

(2) For each segment pi+ qj = r of the Newton polygon, where p, q, r ∈ Z
and gcd(p, q) = 1, find u, v ∈ Z such that up + vq = 1, and let f0 =∑

pi+qj=r ai,jx
jyi. Then for each b ∈ K such that f0(b

−utq, bvtp) = 0,

let f1(x, y) = f
(
b−uxq, bqxp(1 + y)

)
. If f1 is nonsingular in y, stop;

else, go back to step 1 with f replaced with f1.

Algorithm 3.1: Computing parametrisations.

The idea is that we use the Newton polygon to determine the valuation of the
roots y of f(x, y) = 0, and then view f0 as the “leading terms”, the other terms
being thought of as higher-order perturbations. After finitely many iterations, the
equation obtained will be nonsingular in y, so its roots can be be found by Newton
iteration. We thus obtain explicit parametrisations representing the points of C̃
above x = 0 such that the field of definition of each point is the extension generated
by the coefficients of the corresponding parametrisation. Parametrisations for the
points above other values of x can be of course obtained similarly, by shifting the
variable x appropriately.

Remark 3.4. The only reason why we have assumed that K has characteristic 0
was to ensure that f(x, y) ∈ K(x)[y] splits completely over K{{x}}. Theorem 3.2
and Algorithm 3.1 actually remain valid in positive characteristic π as long as
there is no wild ramification, that is to say that none of the places has ramification
index divisible by π, which is equivalent to having π ∤ q whenever we consider a
segment pi + qj = r of a Newton polygon in step 1. All the algorithms presented
in this section therefore remain valid in positive characteristic as long as C̃ is at
most tamely ramified as a cover of P1

x, which in practice means we typically only
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exclude really small characteristics such as 2, 3, or 5. Furthermore, by checking
whether π | q during the execution of algorithm 3.1, we can reliably detect when
this algorithm is going to fail.

3.2. Regular differentials and the genus. Now that we have computed parametri-
sations representing singular points and points at infinity, we can find a basis of
regular differentials on C̃. Indeed, it is well-known [DP13, 2.9] that for all (i, j) ∈ Z
strictly in the interior of the full (as opposed to lower) convex hull of the sup-

port of f(x, y) =
∑

i,j ai,jy
ixj , the differential ωi,j = xj−1yi−1

∂f/∂y dx is regular every-

where except possibly at singular points, and that every regular differential on C̃ is
a K-linear combination of those. We thus obtain a basis of regular differentials by
finding the linear combinations whose expansion along the parametrisations corre-
sponding to singular points do not have any polar part, which amounts to linear
algebra over K. In particular, we recover the genus of C̃ as the size of this basis.

While there exist more direct ways to compute the genus, having an actual basis
of regular differentials is very useful in practice. For example, it makes it possible
to test whether the curve is hyperelliptic, and to find an explicit change of variables
which puts in in Weierstrass form if it is [vH2]. And if the curve is not hyperelliptic,
on can instead compute its canonical image, which provides a way of finding simpler
models for curves defined by a complicated, highly-singular equation (for example,
this is the approach that we followed in [Mas22, 3]).

3.3. Riemann-Roch spaces and extra functionalities. With our parametri-
sations representing singular points and points at infinity, we can also compute the
integral closure

O = {s ∈ K(C) | the only poles of s are above x = ∞}

of K[x] in K(C) in a similar way to the number field case [Coh00, 2.4]: for each
irreducible d(x) ∈ K[x] such that d(x)2 | discy f(x, y), we construct a local basis

by starting with the approximation (ωj = yj−1
1 )1⩽j⩽n where y1 = a(x)y and a(x)

is the leading coefficient of f(x, y) ∈ K(x)[y], and refining it as long as we can find

scalars λj ∈ K[x]/
(
d(x)

)
such that

∑
j λjωj

d(x) has no polar part when evaluated along

the parametrisations representing the points above d(x) = 0. We then join these
local bases into a K[x]-basis of O by computing a Hermite normal form over K[x].

Thanks to this K[x]-basis of O, we can check whether C is geometrically irre-
ducible, by finding which elements of O are also regular above x = ∞.

We can also compute Riemann-Roch spaces, since it is easy, given a divisor on C,
to compute a “common denominator” d(x) ∈ K[x] such that the corresponding
Riemann-Roch space is contained in 1

d(x)O.

This makes it possible to find conic models for curves of genus 0. IfK is a number
field, we can then test whether the curve has a rational point by a constructive
version of Hasse-Minkowski, in which case another use of Riemann-Roch provides
us with an explicit rational parametrisation of the curve [vH0]. Riemann-Roch
spaces also make it possible to turn curves of genus 1 on which a rational point is
known into elliptic curves in Weierstrass form.

Finally, now that we are able to compute Riemann-Roch spaces, we can initialise
Makdisi’s algorithms so as to compute in the Jacobian of C̃.
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We have implemented all the functionalities described in this section in [Pari/GP].
Our code, which compares quite decently to [Magma], is available for use in a de-
velopment branch of [Pari/GP], which also contains the generalisation of [Mas19]
to Q(t) described in Section 2.

4. Examples

In order to demonstrate the use of the algorithm described in Section 2, we have
computed some division polynomials over Q(t). The calculations took place on
the [PlaFRIM] cluster.

4.1. Warmup. As a sanity check, we first used our new algorithm in order to
recover an equation for the 3-torsion of the elliptic surface E defined by

y2 = t(1 + 2t− t2)(x2 − 1)(t2x2 − 1)

that was the object of our attention in [Mas22]. Even though using Makdisi’s algo-
rithms on elliptic curves is obviously out-of-proportion, we instantaneously obtained
the division polynomial

3x8 + 4t(t2 + 1)(t2 − 2t− 1)x6 + 6t4(t2 − 2t− 1)x4 − t8(t2 − 2t− 1)2 ∈ Q(t)[x],

which is incomparably simpler than what we obtained in [Mas22] with [Pari/GP]’s
elldivpol function, and even prettier than the nicest model that we were able to
achieve in [Mas22]. To boost, this polynomial reminisces about t = 0 and t2 − 2t−
1 = 0 being places of bad reduction of E .

4.2. A hyperelliptic family. Encouraged by this first example, we then com-
puted an ℓ-division polynomial for ℓ = 3 of the curve over Q(t) of genus g = 2
corresponding to the hyperelliptic surface H defined by the equation

y2 = x6 − x4 + (t− 1)(x2 + x).

Remark 4.1. The equation y2 = x6−x4+t(x2+x) would have been more natural,
but we shifted the parameter t so as to have good reduction at t = 0. We did the
same for the previous example, but the polynomial which we presented there was
the un-shifted version.

We chose to use the auxiliary prime p = 17, since having the ℓ-torsion de-
fined over Qpa((t)) then merely requires a = 6; and we computed the ℓ-torsion
mod (pe, th) for e = 48 and h = 16. The computation took 2 minutes, and we
obtained an ℓ-division polynomial RH,3(x, t) ∈ Q(t)[x] of degree ℓ2g − 1 = 80 and
whose coefficients have numerators of degree up to 12 and coefficients of up to 27
decimal digits, and common denominator dH(t) = 33(t+ 1)2.

This denominator can probably be explained by the fact that H has bad reduc-
tion at t = −1; even though it can be observed that dH(t) is not divisible by t− 1
whereas H clearly has bad reduction at t = 1 as well.

4.3. A plane quartic family. As a final example, we computed an ℓ-division
polynomial for ℓ = 2 of the family Q of plane quartics of generic genus g = 3
defined by the equation

x4 + (2− t)y4 + 2x3 + x(x+ y) + (t− 1)(y + x2 + x) = 0.
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This time, we took p = 5 as it allows a = 7, and the accuracy parameters
were e = h = 128. After one hour and a half, we obtained a division poly-
nomial RQ,2(x, t) ∈ Q(t)[x] of degree ℓ2g − 1 = 63 with common denomina-
tor dQ(x) = (t − 2)(2t − 3)4d22(t) where d22(t) ∈ Z[t] is irreducible of degree
22 and has leading coefficient 216, and whose coefficient numerators have degree up
to 54 and coefficients of up to 39 digits.

It should be noted that one of the places of P1
t at which Q has bad reduction has

degree 14 over Q; since this must somehow be reflected in an anomalous behaviour
of the specialisation of RQ,2 at this value of t, this explains why the coefficients
of RQ,2 are so complicated, and why the t-adic accuracy (h = 128) required to
identify them was so much larger than in the previous example. This in turn
explains why this computation took so much longer than the previous one.

This time, most of the “geometric content” of the denominator, that is to say
the factors (2t− 3)4 and d22(t), do not correspond to places of bad reduction of Q
(but t−2 does), and should instead probably be interpreted as values of t for which
the evaluation map α ∈ Q(t)(J ) fails to be defined on all the 2-torsion points (see
Section 2 for the definition and context around α). However, it is still interesting
to note that in all three examples, the “arithmetic content”, that is to say the
leading coefficient of the common denominator, is a power of ℓ; we do not know the
explanation for this.

Remark 4.2. Our calculations rely on [Pari/GP]’s polynomial arithmetic, which
unfortunately does not benefit from fast algorithms for multiplication of polynomi-
als of high degree. In view of the high t-adic accuracy that it required, it is likely
that the computation of RQ,2 would have been faster if fast polynomial arithmetic
had been available.

Remark 4.3. As explained in the Introduction, our identification of the coefficients
of our division polynomials as elements of Q(t) from approximations in Qp[[t]] is
not rigorous. However, it is easy to convince oneself that these division polynomials
are correct beyond reasonable doubt, for example by checking that their at nonzero
values of t of good reduction has Galois group contained in GSp(2g, ℓ), and that
their ramification agrees what is predicted by Néron-Ogg-Shafarevich [ST68]. The
geometric interpretation of the ramification of the specialisations of these division
polynomials at bad values of t which we will establish in the next section is also
evidence that their coefficients have been correctly identified.

5. Degeneration of Galois representations and their ramification

Disappointingly, the division polynomials RH,3(x, t) and RQ,2(x, t) which we
have obtained in the previous Section are so complicated that neither [Magma] nor
our plane curves package presented in Section 3 are able to determine their genus,
let alone compute Riemann-Roch spaces required to use Makdisi’s algorithms to
work in their Jacobian. As a result, we are unfortunately unable to conclude our
calculation of the Galois representations occurring in the étale cohomology of the
corresponding surfaces.

However, these division polynomials are still very valuable data, in that each of
them encodes a family of Galois representations parametrised by P1

Q.
To begin with, one easily checks with [Magma] that the specialisation ofRH,3(x, t)

at a rational value of t of good reduction of H (for example, at t = 0) has Galois
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group GSp(4, 3) over Q, which proves that RH,3(x, t) has Galois group GSp(4, 3)
overQ(t); therefore, most specialisations ofRH,3(x, t) will have Galois group GSp(4, 3)
by Hilbert irreducibility, so that the polynomial RH,3(x, t) that we have com-
puted may be viewed as a family (in t) of polynomials (in x) with generic Galois
group GSp(4, 3). One similarly checks that RQ,2(x, t) defines a family of polynomi-
als with generic Galois group GSp(6, 2) = Sp(6, 2), which happens to be a simple
group.

Furthermore, it is especially interesting to study how these families of Galois
representations degenerate at values t = t0 which are places of bad reduction of
the corresponding curves over Q(t). In particular, we would like to understand ge-
ometrically where the ramification of these degenerate representations comes from,
in a manner similar to the Néron-Ogg-Shafarevich criterion [ST68] for good fibres.

By analogy with the good fibres, we would thus expect that ramification at a
prime p ̸= ℓ results from “something bad” happening to “the” bad fibre St0 mod p.
However, this idea is not mathematically meaningful, not only because the fibre is
already bad over Q, but also because this fibre is not canonically defined since, as
explained in Remark 1.4, studying ramification along this family implies working
over the 2-dimensional basis P1

Z, so that we no longer have nice theories of minimal
models of fibred surfaces nor of Néron models of the Jacobian.

Suppose thus for a moment that we dropped the arithmetic dimension and
worked over Q. When calculating the special fibre, the fact we are working over Q
would mean that we are inverting a finite set Πt0 of primes of Q; in other words,
these are the primes which we would have to handle separately if we now wanted
to work over Z because we suddenly remembered that we also have an arithmetic
dimension. In colourful but approximate language, we could say that Πt0 is the set
of primes p such that the determination of the special fibre of S at t = t0 does not
commute with reduction mod p.

By analogy with Néron-Ogg-Shafarevich, we are led to the following explanation
for ramification:

Conjecture 5.1. The primes at which the degenerate representation at t = t0
ramifies are contained3 in Πt0 ∪ {ℓ}.

We are going to provide evidence for this conjecture by checking it on the family
of representations attached to the surfaces H and Q introduced in Section 4. We
will first determine the primes at which the degenerate representations ramify in
Section 5.1, and we will then compare this list of primes with the geometric picture
in Section 5.2.

Remark 5.2. S. Morel has pointed out to the author that the theory of nearby
cycles exposed in [SGA7II] may lead to a proof of this Conjecture 5.1. Such a
proof does not however seem to be straightforward, because this theory is limited
to Lefschetz pencils, and also because the connection between the degenerate rep-
resentation at a bad fibre t = t0 and the restriction to the decomposition group at
t = t0 of the representation of Gal

(
Q(t)/Q(t)

)
defined by the division polynomial

of the curve S/Q(t) is not completely obvious.

3Recall that Néron-Ogg-Shafarevich states that the ℓ-power torsion ramifies exactly at ℓ and at

the primes of bad reduction of the Jacobian. However, it may happen that the ℓ-torsion only
ramifies at a strict subset of these primes; furthermore, the Jacobian may have good reduction at

a prime p even though the curve itself has bad reduction at p.
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Remark 5.3. Instead of defining Πt0 in terms of special fibres of the minimal
regular model, it would also make sense to consider the semistable fibres. The fact
that we are working over a 2-dimensional basis makes it difficult to guess which
choice is the right one for Conjecture 5.1 to be correct, so we content ourselves with
this imprecision. See the study of the fibre of H at t = ∞ in Section 5.2 below for
a case where considering the semistable fibre is necessary to explain ramification.

5.1. Decomposition of the bad places. The bad places of our hyperelliptic
family H defined by

y2 = x6 − x4 + (t− 1)(x2 + x)

are easily determined by examining the discriminant of the right-hand side, and
turn out to be t = 1, t = −1, t = 283/256, and t = ∞. In order to analyse the
degeneration of the family of mod 3 Galois representations defined by RH,3(x, t)
at these places, one must not simply substitute these values for t, as this would be
as incorrect as trying to understand the decomposition of a prime p in a number
field by factoring a polynomial mod p without taking into consideration the index
of the order attached to this polynomial. Instead, we must study the factorisation
over Q((t)) of versions of RH,3(x, t) shifted in such a way that the bad place under
consideration in now t = 0. In view of (3.1), this is equivalent to determining
the ramification in t and the field of definitions of the points above t = 0 of the
desingularisation of the curve RH,3(x, t) = 0, which we can achieve thanks to our
implementation of Duval’s method described in Section 3.1. We thus obtain the
following data:

t Place decomposition Galois group Ramification

1 Q(
√
3)1 ·Q(

√
−1)3 ·

(
Q(ζ9)

+(
√
−1)

)9 · (Q(ζ36)
+
)3

(Z/36Z)× 2, 3

−1 Q(
√
−21)1 ·K1

6 ·K1
18 ·K ′

18
3

C2 × C3 · S2
3 2, 3, 7, 11

283
256 Q(

√
−14)1 ·K ′′

18
3 ·K1

24 (C2 × C3 ⋊ S3) · S4 2, 3, 7, 11

∞ Q2 ·Q6 ·Q(
√
3)4 ·Q( 4

√
12)4 ·Q( 4

√
12)12 D4 2, 3

Table 5.1: Decomposition of the bad places of H.

In this table, the second column shows the decomposition of the place of Q(t) in
the function field Q(t)[x]/

(
RH,3(x, t)

)
; for example, there are five places above t =

∞, two with residue field Q and respective ramification indices 2 and 6, one with
residue field Q(

√
3) and ramification index 4, and two with residue field Q( 4

√
12) and

respective ramification indices 4 and 12. The third column shows the Galois group4

of the compositum of the Galois closures of the residue fields, and the last column
lists the prime numbers which ramify in this Galois closure, or, equivalently, in at
least one of the residue fields. Still in this table, Q(ζm)+ denotes the intersection of
the cyclotomic field Q(ζm) with R, and Kd, K

′
d, K

′′
d , and so on stand for pairwise

non-isomorphic number fields of degree d. As for Galois groups, Cn, D2n, and Sn

respectively denote cyclic, dihedral, and symmetric groups, and A · B stands for
a nonsplit group extension with normal subgroup A and quotient B. For t = 1,

4This Galois group is thus the image of the degenerate Galois representation. It is slightly disap-
pointing to the author that these groups are not particularly exciting subgroups of the symplectic

group; one may hope that other surfaces would yield more exotic Galois groups.
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we have exceptionally expressed the Galois group as (Z/36Z)× instead of C6 × C2

because the Galois closure is the 36th cyclotomic field.

As for our family of quartics Q, the places of bad reduction are t = 1, t = 2, t =
∞, as well as the place of degree 14 mentioned in the previous Section. The high
degree of this last place makes explicit computations with it impractical, so we
ignore it from now on. We obtain the following data:

t Place decomposition Galois group Ramification

1 Q1 ·Q1 ·Q1 ·K1
8 ·K1

8 ·K ′
8
2 ·K ′′

8
2 ·K1

12 C3
2 ⋊ S4 2, 229

2 Q1 ·Q2 ·Q4 ·Q8 ·Q8 ·Q(
√
2)4 ·Q(

√
2,
√
15)8 C2

2 2, 3, 5

∞ Q1 ·Q2 ·Q4 ·K2
3 ·K4

3 ·K1
6 ·K ′′′

8
4

S4 × C2 2, 23

Table 5.2: Decomposition of some of the bad places of Q.

5.2. Visualising ramification on the special fibre. We now check that Conjec-
ture 5.1 provides a satisfactory explanation for the ramification of these degenerate
representations. We will also elucidate the nature of some of the residue fields along
the way. We denote by π the characteristic at which we calculate the special fibre.

The fibre of H at t = 1.
The surface H is not regular above t = 1, but in characteristic π ̸= 2, it becomes

regular after one blowup, and its special fibre then consists of two rational curves
arranged as shown on Figure 5.1:

Figure 5.1: The special fibre of H at t = 1 when π ̸= 2.

In contrast, in characteristic π = 2, it takes many more blowups to obtain a
regular model of H above t = 1. This explains the ramification at p = 2 observed
in Table 5.1 for t = 1. As for ramification at p = 3, it is simply explained by the
fact that we are looking at 3-torsion.

The fibre of H at t = −1.
For t = −1, in characteristic π ̸∈ {2, 7, 11}, we again obtain a regular surface

after one blowup. Its special fibre is made up of an elliptic curve and a rational
curve, as shown on Figure 5.2.
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Figure 5.2: The special fibre of H at t = −1 when π ̸∈ {2, 7, 11}.

Our plane curve package described in Section 3 informs us that overQ, the elliptic
component is the curve of [LMFDB] label 176.a2, whose conductor 176 = 24 · 11.
As a result, in characteristic π = 11, the elliptic curve degenerates, and the special
fibre becomes what is shown on Figure 5.3:

Figure 5.3: The special fibre of H mod 11 at t = −1. Both components are now
rational.

This explains why we observed ramification at p = 11. As for π = 2, the special
fibre is the same as for t = 1, since t is defined over Z and −1 ≡ 1 mod 2.

To summarise, ramification at p ∈ {2, 11} is explained by the elliptic component
having bad reduction, and ramification at p = 3 is explained by the fact that we
are looking at 3-torsion; however, it still remains to explain ramification at p = 7.

A closer inspection of the special fibre over Q (as shown on Figure 5.2) shows
that the intersection points of the two components are not rational, but defined
over Q(

√
7) and Galois-conjugates of each other; as a result, when we reduce

mod π = 7, these intersection points coalesce, and accordingly the special fibre
in characteristic π = 7 is what is shown on Figure 5.4, which finally explains rami-
fication at p = 7:

Figure 5.4: The special fibre of H mod 7 at t = −1.

Remark 5.4. As one would expect, our residue fields pick up the 3-torsion of
the elliptic curve component of the special fibre. More specifically, this elliptic

https://www.lmfdb.org/EllipticCurve/Q/176/a/2
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curve 176.a2 acquires two of its 3-torsion points over Q(
√
−1), whereas each of

its remaining six points of order 3 is defined over one of the Galois conjugates of
a number field F of degree 6. The field K6 appearing in Table 5.1 is actually
an extension of Q(

√
−1) of degree 3 and relative discriminant (1 +

√
−1)2 · 33 · 7,

whereas the field K18 appearing in the same table is an extension of F of degree 3
ramified only above 2 and 7. The fact that these extensions have degree 3 can
be interpreted in terms of generalised Jacobians, since we are looking at 3-torsion.
Curiously, there does not seem to be a similar interpretation for K ′

18, but we still
note that K18 and K ′

18 have the same Galois closure, which also contains K6.

The fibre of H at t = ∞.
The surface H is actually already regular at t = ∞ in any characteristic, so

we can directly visualise its special fibre, which turns out to have a rather nasty
singularity:

Figure 5.5: The special fibre of H at t = ∞ in any characteristic.

The fact that H is regular at t = ∞ even mod π = 2 fails to explain why we
observed ramification at p = 2 in Table 5.1. However, the special fibre which we
have obtained is clearly not semistable, so we may be looking at the “wrong” fibre
(see Remark 5.3 above).

In order to investigate further, we can look in the direction of the semistable fibre,
which means we must perform a ramified base change [IM98, 3.47]. The simplest
candidate is to base-change to Q(t1/2), meaning that we replace t with t2 in our
equation. This results in H no longer being regular, even in characteristic π = 0;
after several blowups, we find that in characteristic π ̸= 2, the special fibre is made
up of four rational curves, one of which has multiplicity two, as shown on Figure 5.6:

Figure 5.6: The special fibre of the base change of H to Q(t1/2) at t = ∞ in
characteristic π ̸= 2.

In contrast, in characteristic π = 2, the desingularisation requires more blowups,
which finally explains the ramification that we observed at p = 2.

https://www.lmfdb.org/EllipticCurve/Q/176/a/2
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Remark 5.5. Because of the presence of a double component, the special fibre
which we have obtained after base-changing to Q(t1/2) is still not semistable, and
a further base change would be required to remedy this. However, as explained
in Remark 5.3, since we do not have a clear notion of “good” model, we content
ourself with this reasonably satisfying explanation.

The fibre of H at t = 283/256.
In characteristic π ̸∈ {2, 3, 7, 11}, H is already regular at t = 283/256, and

its special fibre is a curve of genus 1 with a nodal self-intersection. Over Q, the
desingularisation of this fibre is the elliptic curve of [LMFDB] label 528.c2, whose
conductor is 528 = 24 · 3 · 11, and as expected, the phenomenon described in
Remark 5.4 occurs again, in that the number field K24 displayed in Table 5.1 is an
extension of degree 3 of the field of degree 8 over the Galois conjugates of which
the points of order 3 of this elliptic curve are defined. We do not, however, have a
similar interpretation for the field K ′′

18, but we note that its Galois closure is the
same as that of K24, and also contains the other residue field Q(

√
−14) appearing

in the corresponding row of Table 5.1.
In characteristics π = 2, 3, 7, 11, we respectively have 283/256 ≡ ∞, 1,−1,−1,

which are cases for which we have already found an explanation for the correspond-
ing ramification.

The fibre of Q at t = 1.
We now proceed to the same analysis of ramification for the family of plane

quartics Q. At t = 1, in characteristic π ̸∈ {2, 229}, we find that the special
fibre has three components, two of which are rational, whereas the third one has
genus 2; see Figure 5.7. Over Q, our plane curves package informs us that the
component of genus 2 is isomorphic to the hyperelliptic curve of equation y2 =
x(x4−x+1) whose [LMFDB] label is 29312.a.58624.1; in particular, the conductor
of its Jacobian is 29312 = 27 · 229. As expected, the phenomenon described in
Remark 5.4 occurs again, in that the number field K8 displayed in Table 5.2 is
defined by the irreducible polynomial x8−x2+1 and is therefore clearly a quadratic
extension of a the quartic field of discriminant 229 defined by x4−x+1 over which
the Jacobian of this hyperelliptic curve acquires a point of order 2. We do not have
any similar interpretation for the fields K ′

8, K
′′
8 , nor K12 appearing in the same

row of this table, but we still mention that K8, K
′
8, and K ′′

8 share the same Galois
closure, which is a quadratic extension of the Galois closure of K12.

Since 229 divides the discriminant of this hyperelliptic curve, when we reduce
mod π = 229, this curve degenerates into a curve of genus 1 with a nodal self-intersection:

Figure 5.7: The special fibre of Q at t = 1 when π ̸∈ {2, 229} (left), vs. mod
229 (right).

https://www.lmfdb.org/EllipticCurve/Q/528/c/2
https://www.lmfdb.org/Genus2Curve/Q/29312/a/58624/1
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This explains the ramification that we have observed at p = 229. As for the
ramification at p = 2, it is explained both by the fact that we are now looking at
the 2-torsion, and the fact that determining the special fibre in characteristic π = 2
requires extra blowups.

The fibre of Q at t = 2.
In characteristic π ̸∈ {3, 5}, we obtain a special fibre made up of three rational

components, one of which has a cusp, and which are arranged as shown on figure 5.8.
Working in characteristic π = 5 does not result in requiring more blowups;

however, the rightmost fibre, which is a conic, degenerates into a union of two
curves, which explains the ramification at p = 5:

Figure 5.8: The special fibre of Q at t = 2 when π ̸∈ {3, 5} (left), vs. mod 5 (right).

The same degeneration occurs mod π = 3, and furthermore resolving the singu-
larities of Q at t = 2 also requires more blowups in characteristic 3. Both these
facts explain the ramification at p = 3.

The fibre of Q at t = ∞.
Mod π ̸∈ {2, 23}, our model for Q is already regular at t = ∞, whence a special

fibre formed of one component of genus 1 with a nasty self-intersection, as shown
on Figure 5.9. Over Q, our plane curve package informs us that the desingularisa-
tion of this curve is the elliptic curve with [LMFDB] label 92.a1, whose conductor
is 92 = 22 · 23; and the field K3 displayed in Table 5.2, which is the cubic field of
discriminant −23, is also the field over which this elliptic curve acquires a point
of order 2. Furthermore, K6 is a quadratic extension of K3 which is only ramified
above 2 and 23. We do not have a similar explanation for K ′′′

8 , but we observe that
the Galois closure of K ′′′

8 , which has degree 48, contains K6 and therefore K3.
That 23 divides the conductor of this elliptic curve also results in this curve

acquiring an extra node mod π = 23, which explains the ramification at p = 23.

Figure 5.9: The special fibre of Q at t = ∞ when π ̸∈ {2, 23} (left), vs. mod 23
(right).

https://www.lmfdb.org/EllipticCurve/Q/92/a/1
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