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Abstract

We sketch a method to compute mod ` Galois representations contained in the H2
ét of

surfaces. We apply this method to the case of a representation with values in GL3(F9)
attached to an eigenform over a congruence subgroup of SL3. We obtain in particular a
polynomial with Galois group isomorphic to the simple group PSU3(F9) and ramified at 2
and 3 only.
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1 Introduction

Several techniques (such as [CE11], [Mas18b], and [Mas18c]) have recently been developed
to compute explicitly mod ` Galois representations afforded in the torsion of Jacobians of
curves. However, many “interesting” representations (e.g. in view of the Langlands pro-
gram) are not naturally found in Jacobians, but rather in higher étale cohomology spaces of
higher-dimensional varieties. They are thus inaccessible to the aforementioned methods, and,
to the author’s knowledge, computational methods to deal with these representations have not
yet been developed apart from the case of modular forms over GL2.

The purpose of this article is to sketch such a method, thus answering the conjecture made
in the second-to-last point of the epilogue of [CE11]. Although our method is still at an
experimental stage, it is already sufficiently advanced for us to be able to prove our concept by
giving a concrete example of application, which we also present in this article.

Remark 1.1. Very general algorithms to compute with étale cohomology are presented
in [MO15] and [PTvL15] (cf. also [Jin17] for a more explicit approach in the case of curves);
however, as far as we know these algorithms are not really practical and have never been imple-
mented. Our purpose is to present a method which is completely explicit and really practical
on a moderately simple case, and ought to be generalizable to other similar cases.

The concrete example that we have chosen comes from [GT94], where B. van Geemen and
J. Top give evidence towards a conjecture of L. Clozel’s . They exhibit a Hecke eigenform u over
a congruence subgroup of SL3(Z) of level 128 = 27 whose Hecke eigenvalues lie in Z[2

√
−1], and

an algebraic surface S over Q equipped with an automorphism φS of order 4 defined over Q,
such that for all primes ` ∈ N, the `-adic H2 of S (equipped with the Q`(

√
−1)-vector space

structure induced by φS) contains a Galois-submodule affording the quadratic twist by −2 of
the `-adic representation

ρ̃u,` : Gal(Q/Q) −→ GL3

(
Q`(
√
−1)

)
attached to u.

Remark 1.2. At the time when [GT94] was published, representations attached to this kind of
modular forms were not even known to exist, especially when, like ρ̃u,`, they are not self-dual.
The existence of these representations was established recently independently by [HLTT16]
and [Sch15], and the fact that ρ̃u,` is indeed afforded by the `-adic H2 of S is proved in [IKM18].

According to [GT94, 2.4] and to the first paragraph of section 4 of [IKM18], the `-adic
representation ρ̃u,` is unramified away from1 2 and `, and for each unramified prime p ∈ N, the
characteristic polynomial of ρ̃u,`(Frobp) is

χp(x) = x3 − apx2 + papx− p3 ∈ Q`(
√
−1)[x], (1.3)

where ap ∈ Z[2
√
−1] is the corresponding Hecke eigenvalue of u, and ap is the image of ap

under complex conjugation. In particular, the determinant of this representation is the cube
of the `-adic cyclotomic character, and the value of ap can be recovered as the trace of the
Frobenius.

Remark 1.4. Since ap lies in Z[2
√
−1] for all p, the characteristic polynomial χp(x) is al-

ways congruent to (x− 1)3 mod 2. This shows that the mod 2 representation is trivial (up to
semi-simplification). Therefore, we have chosen to consider the more interesting (and challeng-
ing) case ` = 3.

1This also follows of course from the fact that S has good reduction away from 2.
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The purpose of this article is thus to explain how we have almost certainly succeeded to
compute explicitly the mod 3 representation

ρu,3 : Gal(Q/Q) −→ GL3(F9)

found up to twist in H2
ét(SQ,Z/3Z).

Here and in the rest of the article, by computing explicitly a mod ` Galois representation,
we mean computing a polynomial whose roots are permuted by Galois in the same way as
the vectors in the space of the representation (so that its splitting field agrees with the field
cut out by the representation), as well as extra data making it possible to determine for any
unramified prime p ∈ N the image of the the Frobenius at p up to conjugacy. In our case,
this implies in particular that our computations allow us to determine mod 3 the eigenvalue ap
of u for all p > 5. For instance, we can compute in four seconds that if p = 101000 + 453 is
the first prime after 101000, then ap ≡ −1 mod 3Z[

√
−1]. As a bonus, the Galois group of the

polynomial that we thus obtain, which is by construction the image of ρu,3, turns out to be a
particularly interesting subgroup of GL3(F9) (cf. section 5).

Remark 1.5. Unfortunately, because of the reason given in remark 4.1, we are unable to
certify rigorously that the results of our computations are correct. However, the fact that we
are eventually able to recover the values of the ap mod 3 from the representation (cf. section 6)
shows that our results are correct beyond reasonable doubt.

The central idea making this computation possible, which we owe to J.-M. Couveignes,
is a method to construct by dévissage a curve C (depending on `) such that the reduction
mod ` of ρ̃u,` is contained in the `-torsion of the Jacobian of C. The point is that once we have
obtained an explicit model for C, we are able (at least in theory) to compute the representation,
thanks to our technique presented in [Mas18c]. In principle, this dévissage technique could be
iterated to construct a curve whose Jacobian contains a given representation found in the Hd

ét

of a variety of dimension d.

We will sketch this construction in section 2, after which we will apply it to ρu,3 in section 3.
Next, we will explain in section 4 how we used the curve thus obtained to compute a polynomial
corresponding to ρu,3, after what we use this polynomial to determine the image of ρu,3 in
section 5. Finally, we will show in section 6 how to compute the image of Frobenius elements.

2 Dévissage

Suppose we are given a surface S defined over Q as well as a prime ` ∈ N such
that H2

ét(SQ,Z/`Z) contains a Galois-submodule affording a mod ` Galois representation ρ
that we wish to compute. We are going to show how to construct a curve C whose Jacobian
will also contain ρ (up to twist) in its `-torsion. Of course, this curve C will depend on `. This
construction is an example of the dévissage method summarized in [SGA41

2
, 3.4].

Let µ` be the Galois module formed by the `-th roots of unity. Given a Galois module M
and an integer n ∈ Z, we will denote by M(n) the twist of M by the n-th power of the
mod ` cyclotomic character. Thus µ` = (Z/`Z)(1) for instance. We will sometimes write µ∨`
for (Z/`Z)(−1). Finally, we will also denote by µ` and (Z/`Z)(n) the corresponding constant
sheaves on the étale site of a variety.
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Recall [MilEC, 14.2] that when X is a complete, connected and non-singular curve over Q,
we have canonical (and hence Galois-equivariant) identifications

Hr
ét(X,µ`) '


µ` if r = 0,
J [`] if r = 1,
Z/`Z if r = 2,

where J = Jac(X) is the Jacobian of X. By tensoring out µ`, we deduce the identifications

Hr
ét(X,Z/`Z) '


Z/`Z if r = 0,
J [`](−1) if r = 1,
µ∨` if r = 2.

(2.1)

If we let U be X with finitely many points deleted, which is thus still a non-singular
connected curved but is no longer complete, then we obtain

Hr
ét(U,Z/`Z) '


Z/`Z, if r = 0,
J [`](−1) extended by copies of µ∨` if r = 1,
0 if r = 2,

(2.2)

where the first case is obvious, and the last two follow respectively from corollary 16.2 and
proposition 14.12 of [MilEC].

Suppose now that we have a proper regular surface S, equipped with a proper dominant
morphism π : S −→ B to a non-singular complete curve B, with S, B, and π defined over Q.

Let Z ⊂ B be a nonempty2 finite subset containing the image of the bad fibres of π, and
let Y = π−1(Z) ⊂ S. Define B′ = B \ Z, and S ′ = S \ Y , so that the fibre Sb = S ′ ×B′ b at
any b ∈ B′ of the induced map π : S ′ −→ B′ is a smooth proper curve. The representability of
the relative Picard functor [BLR90, 9.4.4] thus guarantees the existence of a cover ψ : C ′ −→ B′

whose fibre at b ∈ B′ is C ′b = Jac(Sb)[`].
The closed subscheme Y of S is made up of curves, possibly with multiplicities, and in-

tersecting in some way. Define Y ′ to be the scheme obtained from Y by first passing to the
reduced scheme structure, and then deleting the singular points. Thus Y ′ is a disjoint union of
smooth curves defined over Q. Its geometrically irreducible components are therefore permuted
by Galois; let

η =
∏

Components of Y ′

F`

be the corresponding mod ` permutation representation, and denote by η(−1) = η ⊗ µ∨` its
twist by the inverse of mod ` cyclotomic character.

With this notation, we can prove that the “interesting” Galois representations which lie
in H2

ét(SQ,Z/`Z) are also afforded in H1
ét(C

′
Q,Z/`Z):

Theorem 2.3. Suppose ρ is a mod ` Galois representation contained in H2
ét(SQ,Z/`Z) (up to

semi-simplification). Assume that ρ has no Jordan-Hölder components of the form (Z/`Z)(n)
for any n ∈ Z, and no component in common with η(−1). Then the twist of ρ by the mod `
cyclotomic character is also contained (up to semi-simplification) in H1

ét(C
′
Q,Z/`Z).

Remark 2.4. The number field cut out by η(−1) is contained in the compositum of the `-th
cyclotomic field and of the fields of definition of the geometric components of the bad fibres

2We insist that Z must not be empty because we will need B′ to be affine later.
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of π. In general, we expect this field to be considerably smaller than that cut out by ρ if ρ is
an “interesting” representation. For instance, for the surface considered in section 3 below, the
field cut out by η is merely Q(

√
2) (cf. remark 3.5). Therefore, the requirement that ρ have no

common component with η(−1) ought to be harmless for “interesting” representations ρ.

Proof. Let us first show that ρ is also contained in H2
ét(S

′
Q,Z/`Z), so that the bad fibres of π

will no longer be a nuisance. The localization exact sequence [MilEC, 9.4] shows that the kernel
of H2

ét(SQ,Z/`Z) −→ H2
ét(S

′
Q,Z/`Z) is a quotient of H2

ét,Y (SQ,Z/`Z). Étale cohomology with

coefficients in (Z/`Z)(n) satisfies the Bloch-Ogus axioms [BO74], so in particular the Poincaré
duality axiom [Jan90, 6.1.j] shows that

H2
ét,Y (SQ,Z/`Z) ' H2

(
YQ, (Z/`Z)(2)

)
.

Applying [Jan90, 6.1.f] twice shows that H2

(
YQ, (Z/`Z)(2)

)
' H2

(
Y ′Q, (Z/`Z)(2)

)
, and since Y ′

is a disjoint union of smooth curves, applying Poincaré duality [Jan90, 6.1.j] and then (2.1)
or (2.2) component-wise reveals that

H2

(
Y ′Q, (Z/`Z)(2)

)
' η(−1).

Our assumptions on ρ thus show that it must be contained in H2
ét(S

′
Q,Z/`Z) as claimed.

Consider now the Leray spectral sequence [MilEC, 12.7]

Ep,q
2 = Hp

ét(B
′
Q, R

qπ∗Z/`Z)⇒ Hp+q
ét (S ′Q,Z/`Z)

attached to π : S ′ −→ B′. We know by proper base change [MilEC, 17.7] that

Rqπ∗Z/`Z = Hq
ét(Sb,Z/`Z),

where by abuse of notation we denote by Mb instead of M the sheaf on B′ whose stalk at b
is Mb. Besides, the base B′ and the fibres Sb are non-singular connected curves, so Ep,q

2 = 0
unless 0 6 p, q 6 2. Therefore Ep,q

2 = Ep,q
∞ for all p, q such that p + q = 1, which means

that H2(SQ,Z/`Z) admits a filtration with components

• H2
ét(B

′
Q,Z/`Z) = 0 by (2.2),

• H0
ét

(
B′Q, H

2(Sb,Z/`Z)
)

= H0
ét(B

′
Q, µ

∨
` ) = µ∨` by (2.1) and (2.2),

• and H1
ét(B

′
Q,F),

where F is the sheaf on B′ with stalks

Fb = H1
ét(Sb,Z/`Z) = C ′b(−1)

by (2.1) and the definition C ′b = Jac(Sb)[`]. Our assumptions on ρ thus show that it must be
contained in H1

ét(B
′
Q,F).

Similarly, the Leray spectral sequence

Hp
ét(B

′
Q, R

qψ∗Z/`Z)⇒ Hp+q
ét (C ′Q,Z/`Z)

attached to ψ : C ′ −→ B′ shows that H1
ét(C

′
Q,Z/`Z) = H1

ét(B
′
Q,G), where

Gb = H0
ét(C

′
b, ψ∗Z/`Z) = F`C

′
b .
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Since C ′b = Jac(Sb)[`] is an Abelian `-torsion group, there is a natural surjection

Gb = F`C
′
b −→ C ′b = Fb(1)
λ 7−→

∑
c∈C′b

λc c

which, after twisting, yields an epimorphism G(−1) // // F . Let K by its kernel, so that we
have the short exact sequence

0 −→ K −→ G(−1) −→ F −→ 0

of sheaves on B′Q. The associated long exact sequence contains

· · · −→ H1
ét

(
B′Q,G(−1)

)
−→ H1

ét(B
′
Q,F) −→ H2

ét(B
′
Q,K) −→ · · · ,

and as H2
ét(B

′
Q,K) = 0 by [SGA41

2
, 1.3.3.6.ii], we conclude that since ρ is contained in H1

ét(B
′
Q,F),

it also appears in
H1

ét

(
B′Q,G(−1)

)
= H1

ét(C
′
Q,Z/`Z)(−1).

The curve C ′ constructed in theorem 2.3 will not, in general, be connected, because of the
zero section 0 ∈ Jac(Sb)[`] = C ′b. However, we can modify the definition of C ′ so that

C ′b = Jac(Sb)[`] \ {0}.

The curve thus redefined has now a good chance of being geometrically connected, and will
contain3 ρ in its H1

ét. Assuming that C ′ is indeed connected, let C be the smooth proper model
of C ′ over Q; as H1

ét(C
′
Q,Z/`Z) is an extension of H1

ét(CQ,Z/`Z) by copies of µ∨` according

to (2.2), we conclude by (2.1) that the twist of ρ by a power of the cyclotomic character will
be contained in Jac(C)[`] up to semi-simplification.

This leads to the following plan of attack to compute ρ ⊂ H2
ét(SQ,Z/`Z):

1. Compute the Galois representations afforded by the `-torsion of the Jacobian of the
fibre Sb of π for various b ∈ B,

2. Interpolate to glue these data into an explicit model of the cover C −→ B,

3. Catch a twist of ρ in the `-torsion of the Jacobian of C.

The first and last steps require one to be able to compute explicitly the representations
afforded by the torsion of the Jacobian of any smooth curve, which we can do thanks to the
method presented in [Mas18c]. In fact, this is the reason why we invented this method in the
first place.

The “interpolation” part of the second step, as presented here, is quite vague. Fortunately,
this will not be a problem for the example that we have in mind, because the fibres Sb will be
elliptic curves. We have not yet studied how to treat the general case.

3Unless ρ comes from H1
ét(BQ,Z/`Z), but in this case we could compute it in the Jacobian of B in view

of (2.1).
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3 Computation of a nice model of C

We now apply the method presented in the previous section to the case of the representation ρu,3
introduced in section 1. According to [GT94, 3.10], for all `, the mod ` representation ρu,`⊗

(−2
·

)
is contained in H2

ét(SQ,Z/`Z), where S is the minimal regular model of the projective closure
of the surface over Q of equation

z2 = xy(x2 − 1)(y2 − 1)(x2 − y2 + 2xy). (3.1)

In order to apply the method presented in the previous section to this surface, we need to choose
a non-constant map π : S −→ B, where B is a curve. We choose B = P1 with coordinate λ,
and π the map sending (x, y, z) to λ = y/x.

Remark 3.2. Although π is only a rational map from the surface defined by equation (3.1)
to P1, it becomes a morphism once we blow up this surface in order to obtain a regular model.
In fact, π is the canonical map of S (cf. [GT94, 3.2]).

The fibre of π at λ is obtained by setting y = λx in (3.1). The locus of bad fibres is

Z = {0,±1, 1±
√

2,∞} ⊂ B,

and for λ 6∈ Z, the fibre is an elliptic curve Eλ over Q. These Eλ define an elliptic curve
over Q(λ) isomorphic to

y2 = λ(λ2 − 2λ− 1)(x− 2λ)(x+ 2λ)(x+ λ2 + 1), (3.3)

whose j-invariant is 24 (λ4 + 14λ2 + 1)3

λ2(λ2 − 1)4
.

Remark 3.4. Equation (3.3) reveals that Eλ[2] is already defined over Q(λ). This reflects the
fact that the mod 2 representation ρu,2 attached to u is trivial (up to semi-simplification), as
we noted in remark 1.4.

The `-division polynomial ψ`,λ(x) of Eλ is easily computed thanks to [Pari/GP]. By def-
inition, for each λ, the Galois action on the roots of ψ`,λ(x) describes the Galois action on
the x-coordinates of the points of Eλ[`]. We then compute R`,λ(y), the resultant in x of ψ`,λ(x)
and of the Weierstrass equation (3.3) of Eλ, which yields a polynomial describing the Galois ac-
tion on the y-coordinates of Eλ[`]. For ` = 3, the y-coordinate happens to be injective on Eλ[`]
for generic λ; indeed, R3,λ(y) is squarefree for λ = 2.

We have thus computed the mod 3 Galois representation afforded by the Jacobian of the
fibre of π in terms of λ. Substituting x for λ, we obtain the following rather ugly plane model
for C:

− 256x
56

+ 6144x
55 − 62464x

54
+ 333824x

53 − 859648x
52 − 120832x

51
+ 7252992x

50 − 16046080x
49 − 9891072x

48
+ 90136576x

47

− 73076736x
46 − 237805568x

45
+ 420485120x

44
+ 341843968x

43 − 1165840384x
42 − 192667648x

41
+ 2178936320x

40 − 238563328x
39

− 3063240704x
38

+ 639488000x
37

+ 3412593664x
36 − 639488000x

35 − 3063240704x
34

+ 238563328x
33

+ 2178936320x
32

+ 192667648x
31

− 1165840384x
30 − 341843968x

29
+ (−288y

4
+ 420485120)x

28
+ (3456y

4
+ 237805568)x

27
+ (−14400y

4 − 73076736)x
26

+ (14976y
4 − 90136576)x

25
+ (56160y

4 − 9891072)x
24

+ (−142848y
4
+ 16046080)x

23
+ (−52992y

4
+ 7252992)x

22
+ (400896y

4
+ 120832)x

21

+ (−55872y
4 − 859648)x

20
+ (−624384y

4 − 333824)x
19

+ (134784y
4 − 62464)x

18
+ (624384y

4 − 6144)x
17

+ (−55872y
4 − 256)x

16

+ (16y
6 − 400896y

4
)x

15
+ (−96y

6 − 52992y
4
)x

14
+ (−384y

6
+ 142848y

4
)x

13
+ (3232y

6
+ 56160y

4
)x

12
+ (−5424y

6 − 14976y
4
)x

11

+ (960y
6 − 14400y

4
)x

10 − 3456y
4
x
9
+ (960y

6 − 288y
4
)x

8
+ 5424y

6
x
7
+ 3232y

6
x
6
+ 384y

6
x
5 − 96y

6
x
4 − 16y

6
x
3
+ 27y

8
= 0.

A [Magma] session still manages to reveal in a few seconds that C is geometrically integral
and has (geometric) genus g = 7. This is good news, as our method [Mas18c] probably cannot
reasonably cope with genera beyond 20 or 30.
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Remark 3.5. We can easily do the same computation for other values of `, and thus get plane
models of curves C that contain a twist of ρu,` in their Jacobian. However, already for ` = 5,
the model we get is so terrible that [Magma] is unable to determine its genus (the computation
was interrupted after 5 days, because it was using more than 400GB of RAM).

We can still compute this genus, by exploiting the fact that π : S −→ B is an elliptic
surface. Indeed, since B = P1

λ has genus 0, Riemann-Hurewicz tells us that if C is connected,
then its genus is

g = 1− d+
1

2

∑
c∈C

(ec − 1),

where d = `2 − 1 is the degree of the projection ψ : C −→ B induced by π, and the ec are its
ramification indices.

Rewrite ∑
c∈C

(ec − 1) =
∑
λ∈B

∑
ψ(c)=λ

(ec − 1),

and notice that for each λ, we have∑
ψ(c)=λ

(ec − 1) =
∑
ψ(c)=λ

ec −
∑
ψ(c)=λ

1 = d−#ψ−1(λ).

Besides, the ramification of ψ can only come from the bad fibres of π, so this expression is 0
for λ 6∈ Z.

Our surface S is the minimal proper regular model of Eλ/B, so we can analyse its bad fibres
thanks to Tate’s algorithm. It reveals that at λ = 0 and∞, the special fibre is of Kodaira type I∗2,
which, according to Table 6 of [BHPvV, V.10], implies that the monodromy around λ acts on
the homology of the fibre of π by T = − [ 1 2

0 1 ]. If ` is an odd prime, this means that #ψ−1(λ),
which is the number of orbits of T acting on F`2 \ {0}, is 1

2`

(
1(`2− 1) + (`− 1)(`− 1)

)
= 2`− 2

by Burnside’s formula. Similarly, at λ = ±1, the special fibre is of type I4, whence T = [ 1 4
0 1 ]

and #ψ−1(λ) = 2`−2; whereas at λ = 1±
√

2, the special fibre is of type I∗0, whence T = − [ 1 0
0 1 ]

and #ψ−1(λ) = `2−1
2

.
As a result, we find that if ` is an odd prime and if C is connected, then its genus is

g =
3

2
`2 − 3`+

5

2
.

In particular, we recover g = 7 for ` = 3, and we find that g = 25 for ` = 5 and that g = 55
for ` = 7. This means that our method [Mas18c] could probably manage to compute the mod
5 representation ρu,5 if we could find a decent enough model for C for ` = 5 and if we were
patient enough, whereas ` > 7 seems out of our reach.

Let us get back to the case ` = 3 and to our curve C of genus 7. The model that we have
just obtained has degree 56, and therefore arithmetic genus 1485. We do not want to work
with such a badly singular model, so we attempt to eliminate the worst of the singularities
by having [Magma] determine the canonical image of C in P6 and project it on a plane. This
yields the already more appealing model

(−374594220y
6
+ 148459311y

5 − 20961720y
4
+ 1285362y

3 − 35100y
2
+ 351y)x

4

+ (−61958809438y
8
+ 12030741624y

7 − 574743724y
6 − 5928484y

5
+ 27600y

4
+ 129884y

3 − 8516y
2
+ 216y − 2)x

2

+ (15790199962940y
10 − 5854413418867y

9
+ 927447207596y

8 − 81010188948y
7
+ 4049824636y

6 − 100135334y
5

− 48724y
4
+ 70252y

3 − 1664y
2
+ 13y) = 0.

We check that this model still has genus 7, which by Riemann-Hurwitz ensures that it is
birational to the previous one, as opposed to being a quotient of it.
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By projecting the canonical image onto another plane, we also find that C is a cover of
degree 2 (simply given by x 7→ x2 on our new model) of a curve E of genus 1, which turns out
to be an elliptic curve isomorphic to the modular curve X0(24). We learn from the [LMFDB]
that this curve has rank 0; after careful back-tracking, this allows us to determine the complete
list of rational points of C in our new model.

In order to further simplify our model for C, we turn to a trial-and-error manual shifting and
rescaling process based on the shape of the rational points thus obtained and on the observation
of the p-adic valuations of the coefficients of our model for small primes p. After a few attempts,
we obtain the quite satisfying model

(3y5 − 6y3 + 3y)x4 + (2y8 − 8y7 + 4y6 + 12y5 + 12y3 − 4y2 − 8y − 2)x2

+ (9y9 − 36y8 − 36y7 + 36y6 + 18y5 − 36y4 − 36y3 + 36y2 + 9y) = 0. (3.6)

Remark 3.7. The whole process to obtain a nice model for C was rather rustic. Most computer
algebra systems include algorithms that, given a complicated polynomial defining a number
field, are able to find a much simpler polynomial defining the same field (when it exists); it
would be nice to have similar algorithms for curves!

Remark 3.8. The automorphism φS of order 4 of S mentioned in section 1 is given by (x, y, z) 7→
(y,−x, z) on the model (3.1) according to [GT94, 3.4]. It naturally induces an automorphism φC
of C, which still has order 4 since it defines the F9 = F3(

√
−1)-vector space structure on the

piece of the 3-torsion of the Jacobian of C that affords ρu,3. Although is not too difficult to
determine that φS is given by

(x, y, λ) 7→

(
−2

x+ 2λ2 − 2λ+ 2

λ(x+ 2λ)
,

(
2(λ− 1)

λ2(x+ 2λ)

)2

y,−1

λ

)
on (3.3), it is arduous to determine explicitly the action of φC on (3.6) because of the method
by which we have obtained this model. Fortunately, it is simple enough that [Magma] is able
to inform us that the automorphism group of C happens to be cyclic of order 4, and to provide
us with an explicit generator, which must therefore coincide with φC or its inverse. We thus
find that the action of φC on (3.6) is simply given by (x, y) 7→ (±x/y,−1/y); in particular,
the map x 7→ x2 mentioned above is actually the quotient by φ2

C . However, we will see in
remark 4.3 below that knowing the action of φC explicitly does not really help to speed up our
computations. We still note that if we homogenize (3.6) and then dehomogenize with respect
to x, then φC becomes a mere rotation of angle π/2 around the origin; it may be that for
general `, simple models of C could be obtained by looking for ones such that φC acts in a
similarly simple way.

The arguments of the previous section show that the 3-torsion of the Jacobian of (3.6)
contains the representation contained in H2

ét(SQ,Z/3Z) up to twist by the mod 3 cyclotomic

character χ3, which agrees with the quadratic character
(−3
·

)
. Since this representation was

already the twist of the representation ρu,3 we are interested in by
(−2
·

)
, this is just an extra

twist.

In order to confirm this, we can check that the characteristic polynomials match at a few
primes p. Indeed, let ρ′u,3 be the GL6(F3)-valued representation obtained by restricting the
scalars from the GL3(F9)-valued representation ρu,3. On the one hand, we know that for p 6= 2, 3,
the characteristic polynomial of ρ′u,3(Frobp) is

χ′p(x) = χp(x)χp(x) = (x3 − apx2 + papx− p3)(x3 − apx2 + papx− p3) ∈ F3[x],
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the norm from F9 to F3 of the polynomial χp(x) given in (1.3), and furthermore [GT94, 2.5]
provides us with the values of the Hecke eigenvalues ap of u for p 6 67. On the other hand, we
can determine the characteristic polynomial Lp(x) ∈ Z[x] of the Frobenius at p acting on the
Jacobian of C (which is the local factor at p of its L function) by counting the Fpa-points of C
for a 6 g, where g = 7 is the genus of C; in practice, [Magma] can do this in reasonable time
for p 6 19. We then check that for 5 6 p 6 19, Lp(x) mod 3 is divisible by the characteristic
polynomial χ′p(εx) of the image of Frobp by ρ′u,3⊗

(
6
·

)
, where ε =

(
6
p

)
= ±1. This corroborates

the fact that the Jacobian J of C contains ρ′u,3 ⊗
(

6
·

)
in its 3-torsion.

Remark 3.9. Since g = 7, the degree of Lp(x) is 14. We actually observe that for all the
primes 5 6 p 6 19 that we can test, Lp(x) is congruent mod 3 to the product

χE,p(x)χ′p
(
(6
p
)x
)
χ′p
(
(−2
p

)x
)

where the factors have respective degrees 2, 6, and 6, and are the characteristic polynomial
of Frobp for the mod 3 representation ρE,3 attached to the elliptic
curve E = X0(24) exhibited above, the expected twist ρ′u,3 ⊗

(
6
·

)
, and the twist ρ′u,3 ⊗

(−2
·

)
originally contained in H2

ét(SQ,Z/3Z), respectively. The fact that we eventually managed to

compute ρ′u,3⊗
(

6
·

)
from a piece of J [3], whereas we were unable to do the same for ρ′u,3⊗

(−2
·

)
(even after significantly increasing the p-adic accuracy in our computation, cf. the next section),
leads us to guess that the Galois-module J [3] decomposes as

J [3] ∼

ρE,3 ρ′u,3 ⊗
(

6
·

)
∗

ρ′u,3 ⊗
(−2
·

)
 ,

where ∗ is non-trivial. In other words, the twist ρ′u,3⊗
(−2
·

)
originally contained in H2

ét(SQ,Z/3Z)
seems to show up as quotient of J [3].

4 Computation of the representation in J

Now that we have obtained a reasonable model for C, we are going to use our method [Mas18c]
to compute the representation ρ′u,3 ⊗

(
6
·

)
afforded by a Galois submodule T of the 3-torsion of

the Jacobian J of C. This method requires us to pick a prime p of good reduction for which
the local L factor

Lp(x) = det(x− Frobp |J) ∈ Z[x]

and the characteristic polynomial

χ′p
(
(6
p
)x
)

= det(x− Frobp |T ) ∈ F3[x]

are known, and such that χ′p
(
(6
p
)x
)

is coprime to its cofactor Lp(x)/χ′p
(
(6
p
)x
)
. We choose p = 11,

which satisfies these assumptions. Besides, we then have

χ′p
(
(6
p
)x
)

=
6∑

k=0

xk ∈ F3[x],

which is irreducible; this fact will be useful on two occasions below.
Our method performs by generating points of J [3] over an appropriate extension of F11 and

projecting them onto T thanks to the action of Frob11 until we get a basis of T , to lift this
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basis 11-adically, and then to evaluate a Galois-equivariant rational map α from J to A1 at the
points of T . If the 11-adic accuracy is sufficient, then we will be able to identify the coefficients
of the polynomial

F (x) =
∏
t∈T
t6=0

(
x− α(t)

)
as rational numbers; if furthermore α is injective on T , we will thus have obtained a polynomial
whose roots are permuted under Galois just as the non-zero points of T are.

Here, the fact that the characteristic polynomial of Frob11 is squarefree implies that Frob11

is a cyclic endomorphism of the F3-vector space T , which means that we can afford to lift only
one point of T and recover a basis by applying Frob11 repeatedly (cf. section 6.4 of [Mas18c]).

Remark 4.1. The fact that we identify the coefficients of F (x) from their p-adic approxima-
tions is the reason why we cannot rigorously certify that our computation results are correct.
Nevertheless, we will give in section 6 below very strong evidence that these results are correct
beyond reasonable doubt.

In order to be able to compute in J , we need to fix an effective divisor D0 on C of
degree d0 > 2g+ 1 = 15 for which we can explicitly compute the corresponding Riemann-Roch
space. In order to construct the evaluation map α, we also need to pick two non-equivalent
effective divisors E1, E2 of degree d0 − g such that we can also compute the Riemann-Roch
spaces attached to 2D0 − E1 and 2D0 − E2 (the notations are the same as in [Mas18c]).

It is qualitatively clear that we should strive to choose D0, E1, and E2 so that these three
Riemann-Roch spaces are as “nice” as possible, since the values of α will then have smaller
arithmetic height, so that the p-adic accuracy required to identify the coefficients of F (x) will be
lower and the computation will be more efficient. After a bit of experimentation with [Magma],
we choose

d0 = 16, D0 = 9P + 7Q, E1 = 6P + 3Q, E2 = 5P + 4Q,

where P,Q ∈ C(Q) are points such that, in the model obtained at the end of the previous
section, the divisors of poles of x and y are respectively

(x)∞ = 3P +Q+R +M1 +M2 and (y)∞ = 2P + 2Q

where R has degree 1 and M1 and M2 both have degree 2.

Remark 4.2. It may happen that the Q-basis of a Riemann-Roch space provided by [Magma]
becomes linearly dependent when reduced mod p. Fortunately, this is easy to detect, be-
cause functions on C are represented internally in [Mas18c] as the vector of their values at
a large enough set of fixed points of C. This is also easy to fix, by Gaussian elimination:
given s1, · · · , sd ∈ Q(C) forming the basis of a given Riemann-Roch space, if

∑
i λisi ≡ 0 mod p

for some λi ∈ Fp not all 0, it suffices to substitute 1
p

∑
i λ̃isi to sj, where j is such that λj 6= 0

and the λ̃i are lifts to Z of the λi. However, this complicates the basis of the Riemann-Roch
space, which in turn increases the height of the values of the evaluation map α. Fortunately,
this phenomenon does not occur with our choices of D0, E1, E2 and p.

Now that we have made these choices, we are ready to launch the computations. After
about 30 hours of CPU time (but only 1 hour of real time, thanks to parallelisation), we obtain
a polynomial F (x) of degree 36 − 1 = 728 whose coefficients are rational numbers which all
have (up to some small factors) the same denominator, a 191-digit integer. The p-adic precision
used was O(111024).
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The discriminant of F (x) factors into a large power of 2 times a huge power of 3 times a
large square, which indicates that its coefficients have probably been correctly identified from
their p-adic approximations. The fact that discriminant is non-zero also shows that α is injective
on T minus the origin, so that the roots of F (x) represent faithfully the Galois action on T
minus the origin, as desired.

Remark 4.3. Evaluating the map α at points of T with high 11-adic precision is computa-
tionally costly. As explained in [Mas18c, 6.4], we save a lot of time thanks to the fact that we
are able to apply explicitly the Frobenius to the points of T : not only does this allow us to
generate new points of T from old ones, but it also reduces the number of evaluations of the
map α, since it commutes with the Frobenius. It is tempting (and not difficult, by the same
method as in [Mas18c, 2.2.5]) to use the same idea with the automorphism of order 4 induced
on J by φC ; unfortunately, while this allows us to generate even more points of T from old
ones, this does not reduce the number of evaluations of α, and therefore only saves a marginal
amount of computation time.

5 The image of ρu,3

We find that the polynomial F (x) computed in the previous section has three factors over Q,
of respective degrees 224, 252, and 252. This shows that the image of our representation does
not act transitively on F6

3 minus the origin.
However, the degrees of these factors do not clearly indicate which subgroup of GL6(F3) we

are dealing with. In order to figure this out, we would like to determine the Galois groups of
these factors; however, their degrees and heights are far too large for standard Galois group
computation algorithms. We would therefore like to reduce these factors (in the sense of
remark 3.7), but they are actually too large even for this!

As in [Mas18a, section 2], we circumvent this problem by considering the projective version
of our representation, which has values in PGL3(F9). We can obtain a polynomial corresponding
to this representation by gathering the 11-adic roots α(t) of F (x) along the F9-vector lines of T
in a symmetric way (e.g. by summing or multiplying them). However, this requires us to
understand the F9-structure of T , whereas we only know the F3-structure for now.

The most direct way to obtain this consists in using the action induced by the automor-
phism φC of order 4 of C, since it corresponds to multiplication by i ∈ F9 = F3(i) on T ; indeed,
as explained in remark 4.3, it is not difficult to compute this action explicitly. However, there
is also another method. Indeed, let Φ ∈ GL(T ) be the action of Frob11 on T . We know that F×9
acts on T by a cyclic subgroup of GL(T ) of order 8 contained in the commutant of Φ, but
luckily, Φ is cyclic, so its commutant is simply F3[Φ], which is a ring isomorphic to F36 since
the characteristic polynomial of Φ is isomorphic over F3. In particular, there is a unique cyclic
subgroup of order 8 in F3[Φ]×, which must thus agree with the action of F×9 .

Either way, we can thus compute as above a polynomial F0(x) of degree 1
8

degF = 91
describing the projective representation attached to ρu,3 ⊗

(
6
·

)
(which is also that attached

to ρu,3).

We can also be a bit more subtle, and consider all intermediate representations between the
linear one and the projective one. Let us write F9 = F3(i), where i2 = −1. Then the subgroups
of F×9 are, in decreasing order,

F×9 > {±1,±i} > {±1} > {1}.
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We can construct as above polynomials F0(x), F1(x), F2(x) and F3(x) = F (x) describing the
corresponding quotients of ρu,3 ⊗

(
6
·

)
. These polynomials factor over Q as follows:

Quotient by Degrees of factors
F×9 28 + 63

{±1,±i} 56 + 63 + 63
{±1} 112 + 126 + 126
{1} 224 + 252 + 252.

These degrees still do not clearly indicate what the image of the representation is. If anything,
the fact that we have two factors for the projective representation that become three factors
afterwards is rather mysterious.

Fortunately, one of the factors of F0(x) has degree 28, which is small enough that we can
compute a much simpler polynomial defining the same number field, namely

x28 − 12x27 + 60x26 − 132x25 − 30x24 + 624x23 + 420x22 − 7704x21

+ 17118x20 − 9504x19 − 14424x18 + 10824x17 + 36492x16 − 64992x15 + 19488x14

+ 56064x13 − 89604x12 + 109296x11 − 88368x10 − 11472x9 + 58488x8 − 130176x7

+ 34224x6 − 58272x5 − 39960x4 + 32256x3 + 24480x2 − 352x− 1776.

This polynomial is nice enough that [Magma] can rigorously determine its Galois group in less
than a minute. This group turns out to be PSU3(F9) (as we could have predicted, cf. remark 5.3
below), which explains all the observations made above!

Indeed, first of all one checks thanks to [Pari/GP] that the field defined by the factor of
degree 63 of F0(x) is contained in the compositum of the field defined by that of degree 28
with itself, which shows that these factors have the same splitting field. Next, since there
are no nontrivial cube roots of unity in characteristic 3, the quotient SU3(F9) −→ PSU3(F9) is
actually an isomorphism; in particular, it admits a section. This means that one twist of ρu,3 has
image SU3(F9) (and actually, this twist is the one by the mod 3 cyclotomic character χ3 =

(−3
·

)
since we have seen that det ρu,3 = χ3

3 = χ3).
Let now H be a non-degenerate Hermitian form on the space Fnq2 , where q is a prime power

and n ∈ N, and let An (respectively Bn) be the number of elements t ∈ Fnq2 such that H(t) = 1
(respectively, such that H(t) = 0). Since the norm between finite fields is surjective, An is also
the number of elements t ∈ Fnq2 such that H(t) has prescribed value y ∈ F×q . From this fact, one
easily determines a crossed recurrence relation satisfied by An and Bn, from which one deduces
that

An = q2n−1 + (−q)n−1, Bn = q2n−1 − (q − 1)(−q)n−1.

For n = 3 and q = 3, one finds An = 252 and Bn = 225, which explains the shape 224+252+252
of the factorization of F3(x): the first factor corresponds to the nonzero isotropic t ∈ T , and
the other two correspond to the t such that H(t) = 1 (respectively, such that H(t) = −1).

Similarly, the Galois group of the factor of degree 28 of F0(x) is permutation-isomorphic
to PSU3(F9) acting on the isotropic lines of F3

9, whereas that of the factor of degree 63 corre-
sponds to the action of PSU3(F9) on non-isotropic lines.

Finally, the fact that the value of H is not well defined at a non-isotropic t known up to
scaling by F×9 , but becomes well-defined if we know t up to scaling by

{±1,±i} = Ker Norm : F×9 → F×3 ,

explains why the factor of degree 63 of F0(x) yields two factors of degree 63 of F1(x) instead
of one of degree 126.
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Remark 5.1. We have also obtained a simpler polynomial of degree 63 defining the same
number field as this factor of degree 63. This polynomial is available on the author’s web
page [Mas], and we do not reproduce it here. The polynomial of degree 28 displayed above and
this polynomial of degree 63 thus solve the inverse Galois problem for the standard actions of
the simple group PSU3(F9) in respective degrees 28 and 63, and with controlled ramification
(only at 2 and 3) to boost! The respective discriminants and signatures of the corresponding
number fields are as follows:

Degree Discriminant Signature

28 276348 (4, 12)

63 21663108 (7, 28).

Remark 5.2. Since factors of the Fi(x), 0 6 i 6 3 correspond to towers of quadratic exten-
sions, we can use the techniques presented in [Mas18a, section 2] to compute nice polynomials
defining the same number fields as the factors of F3(x). This technique has the advantage of
naturally producing even polynomials, such that the field automorphism induced by x 7→ −x
corresponds to the action of −1 ∈ F×9 . This means that given such a polynomial f(x2), the
polynomial f(Dx2) corresponds to the twist of the representation by

(
D
·

)
for any D ∈ Q×. By

taking D = −3, we obtain polynomials corresponding to the representation ρu,3 ⊗
(−3
·

)
whose

image is the simple group SU3(F9) ' PSU3(F9), thus again solving the inverse Galois problem
for the natural permutation representations of this group. These polynomials are also available
on the author’s web page [Mas].

Remark 5.3. As pointed out by an anonymous referee on a previous version of this arti-
cle, the fact that the image of the representation is unitary is not a coincidence. Indeed,
let ` ≡ −1 mod 4 be a prime, identify F`2 with F`(i), i2 = −1, and write Hr for Hr

ét(SQ,Z/`Z)
for brevity. The trace map [MilEC, 24.1.a] and the properness of S over Q provide us with a
canonical isomorphism H4 ' Z/`Z(−2), so in particular φS must act trivially on H4. The cup
product thus defines an alternating bilinear form

E : H2 ∧H2 −→ H4 ' F`(−2)

satisfying
E(φSu, φSv) = E(u, v)

for all u, v ∈ H2, which may be extended into the bilinear form

H : H2×H2 −→ F`(i)(−2)
(u, v) 7−→ E(φSu, v) + iE(u, v)

which satisfies ImH = E and is Hermitian with respect to φS (exactly as a Riemann form cor-
responds to a Hermitian form). Therefore Galois acts on the Hermitian space H2 by similarities
of ratio given by the −2nd power of the mod ` cyclotomic character, i.e.

H(σu, σv) = χ`(σ)−2H(u, v)

for all σ ∈ Gal(Q/Q) and u, v ∈ H2. In particular, for ` = 3 the image of our Galois represen-
tation must be contained in the unitary group.
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6 Computation of the image of Frobp

Let L be a Galois number field, given as the splitting field of an irreducible
polynomial f(x) ∈ Q[x]. In [Dok13], the Dokchitsers show that if the action of G = Gal(L/Q)
on the roots of f(x) in L is known explicitly, then one can compute pairwise coprime resol-
vents ΓC(x) ∈ Q[x] indexed by the conjugacy classes C of G, such that if the image of Frobp
in G lies in C, then the corresponding resolvent ΓC(x) vanishes at xp = Tr

Ap

Fp

(
aph(a)

)
∈ Fp,

where Ap = Fp[x]/f(x), a is the image of x in Ap, and h(x) ∈ Z[x] is a fixed parameter on
which the ΓC(x) depend.

The point is that since the ΓC(x) are coprime, they remain coprime mod p for almost all p,
so only one of them can vanish at xp and we can tell in which class C the image of Frobp lies.
The finitely many p for which this is no longer true are usually quite small, and for these p
be get not one but several C that may contain Frobp. If the conjugacy class of Frobp is really
wanted for such a p, one should recompute the resolvents with another value of the parameter h.

Since the quotient SU3(F9) −→ PSU3(F9) is actually an isomorphism, and as det ρu,3 =
(−3
·

)
is known explicitly, for each prime p we can recover the image of Frobp by ρu,3 from its image
by the projective version of this representation. Namely, if the image of Frobp by the projective
representation is conjugate toM ∈ PSU3(F9), then ρu,3(Frobp) is conjugate to

(−3
p

)
M in U3(F9),

where M ∈ SU3(F9) is the image of M by the inverse of this isomorphism.

We thus apply the Dokchitsers’ method to the case where f(x) is the polynomial of degree 28
displayed in the previous section. This polynomial has Galois group PSU3(F9), and its roots
are indexed by the lines of F3

9 that are isotropic with respect to a certain hermitian form H. We
can determine H from the fact that it is preserved by the action of Frob11, and after a change
of basis of F3

9 we can assume that H is the standard Hermitian form.
The group PSU3(F9) has order 6048, which is small enough that [Magma] can effortlessly

decompose it explicitly into conjugacy classes, which is all we need to compute the resol-
vents ΓC(x).

Thanks to these resolvents, we can now determine the image of Frobp by ρu,3 for almost all p.
Let us start by the primes between 5 and 67, for which the value of the Hecke eigenvalue ap ∈ Z[i]
is given in [GT94].
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p ρu,3(Frobp) ap from [GT94]

5 3 possibilities −4i− 1

7 +

[
0 i+ 1 i− 1

0 i+ 1 −i+1

1 0 0

]
4i+ 1

11 −
[

0 i+ 1 i− 1

0 i+ 1 −i+1

1 0 0

]
−10i− 7

13 +

[
0 i+ 1 i+ 1

0 i− 1 −i+1

1 0 0

]
4i− 1

17 −
[

1 0 0

0 i− 1 i− 1

0 i+ 1 −i−1

]
7

19 +

[
0 i+ 1 i− 1

0 i+ 1 −i+1

1 0 0

]
−14i+ 1

23 −
[

0 i+ 1 i− 1

0 i+ 1 −i+1

1 0 0

]
−4i+ 17

29 −
[

0 0 1

1 0 0

0 1 0

]
−12i− 9

31 3 possibilities 1

37 2 possibilities 28i− 25

41 −
[

1 0 0

0 i− 1 i− 1

0 i+ 1 −i−1

]
−5

43 +

[
1 0 0

0 i− 1 i− 1

0 i+ 1 −i−1

]
30i− 7

47 −
[

0 i+ 1 −i−1

0 −i+1 −i+1

1 0 0

]
40i+ 17

53 2 possibilities −20i+ 23

59 −
[

0 0 −i
0 −i 0

1 0 0

]
22i− 39

61 +

[
0 0 −i
0 −i 0

1 0 0

]
20i+ 63

67 +

[
0 i+ 1 −i+1

0 −i−1 −i+1

1 0 0

]
−22i+ 65
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With our choice our h, the resolvents ΓC(x) do not remain coprime mod p
for p ∈ {5, 31, 37, 53}, so for these p we cannot determine the image of Frobp without re-
computing the resolvents with another choice of h(x). For the other p, we can compute the
conjugacy class C ⊂ PSU3(F9) containing Frobp, and we display the image of Frobp by ρu,3 as(

−3

p

)
M ∈ U3(F9),

where M is a fixed representative of its conjugacy class in SU3(F9) ' PSU3(F9) that we have
arbitrarily chosen because many of its coefficients were 0.

The fact that the trace agrees with the reduction mod 3 of the value of ap given in [GT94]
is convincing evidence that we have correctly computed ρu,3.

Next, we do the same thing for the first twenty primes above 101000. Of course, the ΓC(x)
remain coprime mod p for such large p, so we find unambiguously the conjugacy class
of ρu,3(Frobp). By looking at the trace, we deduce the value of ap mod 3. The results are
displayed in the table below.

Remark 6.1. It takes about 100 seconds for [Pari/GP] to certify the primality of such a large
prime, but only 4 seconds to compute the conjugacy class of ρu,3(Frobp), almost all of which

are spent computing Tr
Ap

Fp

(
aph(a)

)
∈ Fp.

The resolvents ΓC(x) are available on the author’s web page [Mas].
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p ρu,3(Frobp) ap mod 3Z[i]

101000 + 453 +

[
1 0 0

0 i− 1 i− 1

0 i+ 1 −i−1

]
−1

101000 + 1357 −
[

0 0 i

0 i 0

1 0 0

]
−i

101000 + 2713 −
[

0 0 −i
0 −i 0

1 0 0

]
i

101000 + 4351 −
[

0 i+ 1 −i−1

0 −i+1 −i+1

1 0 0

]
i− 1

101000 + 5733 +

[
0 i+ 1 −i+1

0 −i−1 −i+1

1 0 0

]
−i− 1

101000 + 7383 +

[
0 0 −i
0 −i 0

1 0 0

]
−i

101000 + 10401 +

[
1 0 0

0 i 0

0 0 −i

]
1

101000 + 11979 +

[
0 i+ 1 i+ 1

0 i− 1 −i+1

1 0 0

]
i− 1

101000 + 17557 −
[

1 0 0

0 i− 1 i− 1

0 i+ 1 −i−1

]
1

101000 + 21567 +

[
1 0 0

0 i− 1 i− 1

0 i+ 1 −i−1

]
−1

101000 + 22273 −
[

0 i+ 1 −i−1

0 −i+1 −i+1

1 0 0

]
i− 1

101000 + 24493 −
[

0 i+ 1 −i−1

0 −i+1 −i+1

1 0 0

]
i− 1

101000 + 25947 +

[
0 i+ 1 i− 1

0 i+ 1 −i+1

1 0 0

]
i+ 1

101000 + 27057 +

[
0 i+ 1 −i+1

0 −i−1 −i+1

1 0 0

]
−i− 1

101000 + 29737 −
[

0 i+ 1 −i+1

0 −i−1 −i+1

1 0 0

]
i+ 1

101000 + 41599 −
[

1 0 0

0 i 0

0 0 −i

]
−1

101000 + 43789 −
[

0 0 1

1 0 0

0 1 0

]
0

101000 + 46227 +

[
0 i+ 1 −i−1

0 −i+1 −i+1

1 0 0

]
−i+ 1

101000 + 46339 −
[

0 0 i

0 i 0

1 0 0

]
−i

101000 + 52423 −
[

0 i+ 1 i− 1

0 i+ 1 −i+1

1 0 0

]
−i− 1
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