Gröbner Bases - Assignment 5

Sean Martin - 13319354

05/04/2016

1 Problem 1

1.1 part (i)

Let $A = \mathbb{C} \langle x, y \rangle / I$ and $I = (f), f = ay^2 + byx + cxy + dx^2$. Since a = b = c = 0 and a, b, c, d not all simultaneously zero, $d \neq 0$ and so we can assume W.L.O.G. that d = 1. Thus $I = (x^2)$, which has reduced Gröbner basis G consisting of x^2 since the S-polynomial forming from the self overlap x of x^2 goes to 0. Let x, y be labelled 1,2. Since x, y are the reduced monomials of degree 1, we get the graph of reduced words Λ where (i, j) denotes a path exists from i to j:

xx = xx, but this is not reduced w.r.t. G

 $xy = xy, (1,2) \in \Lambda$

 $yx = yx, (2,1) \in \Lambda$

 $yy = yy, (2,2) \in \Lambda$

So we get the incidence matrix M:

$$M = \left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right]$$

This has characteristic polynomial $p_M(t) = \det(t\mathbb{I} - M) = t^2 - t - 1$. Thus we get the recurrence relation

$$n_{2+j}(A) - n_{1+j}(A) - 1n_j(A) = 0, \forall j \ge 1$$

Since x, y are reduced w.r.t. G, $n_1(A) = 2$. $n_2(A) = 3$, which is the sum of the entries of M. $n_3(A) = 5$ by the recurrence relation. The recurrence relation is interestingly the same as that of the Fibonacci numbers, and so the dimension of the n-th homogeneous component of A is the n+3 Fibonacci number. We consider the Fibonacci numbers to be:

$$0, 1, 1, 2, 3, 5, 8, \dots$$

1.2 part (ii)

In this case $c \neq 0$. Thus G the reduced Gröbner basis of I consists of one term with leading monomial xy since we have no overlaps. Keep the labelling x, y as 1,2. In this case we get the graph of reduced words Λ :

 $(1,1) \in \Lambda$ since now x^2 is reduced w.r.t. G

xy is now non-reduced

 $(2,1) \in \Lambda, (2,2) \in \Lambda$ as before

So we get the incidence matrix M:

$$M = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right]$$

We get the characteristic polynomial $p_M(t) = (t-1)^2 = t^2 - 2t + 1$ and thus the recurrence relation

$$n_{2+i}(A) - 2n_{1+i}(A) + n_i(A) = 0, \forall i \ge 1$$

We have $n_1(A) = 2 = 1 + 1$, $n_2(A) = 3 = 2 + 1$ as in part (i). Thus our recurrence relation gives $n_3(A) = 4 = 3 + 1$. More generally $n_k(A) = 2n_{k-1}(A) - n_{k-2}(A) = 2(k) - (k-1) = k + 1$.

1.3 part (iii)

In this case $b \neq 0$. Thus G the reduced Gröbner basis of I consists of one term with leading monomial yx since we have no overlaps. In this case we get the graph of reduced words Λ :

$$(1,1),(1,2),(2,2) \in \Lambda$$

So we can easily see that the sum of entries in powers of M and the characteristic polynomial of our incidence matrix M will be the same as in case (ii). Thus $n_k(A) = k + 1$ as in case (ii).

2 Problem 2

We are considering I = (f) where $f = ay^2 + byx + cxy + dx^2$, $a \neq 0$. So I contains no elements of degree 1, thus dim $I_{(1)} = 0$.

I contains a single homogenous element of degree 2, namely f, thus dim $I_{(2)} = 1$.

Now we can certainly span $I_{(3)}$ by the polynomials xf, yf, fx, fy, since that is all possible ways to multiply f by a monomial of degree 1. It may not form a basis however, and thus dim $I_{(3)} \leq 4$.

To see the corresponding inequality for the general dim I_k note the following. To span $I_{(k)}$ we can put k-2 monomials of degree 1 around f, in the following manner: hfh' where h, h' are words consisting of x, y and $\deg(h) + \deg(h') = k-2$. Since there is only two choices for each letter in h, h', when we fix the length of h we obtain 2^{k-2} homogenous elements of degree k. When we vary h, we have k-1 choices for the length of h and thus we get dim $I_{(k)} \leq (k-1)2^{k-2}$.

3 Problem 3

For this question, we know that yf, fy, xf, fx span $I_{(3)}$ so if we can get one to be a linear combination of the others then we would guarantee dim $I_{(3)} = 3$. So to do this let us set $-yf + e_1(fy) + e_2(xf) + e_3(fx) = 0$, $e_1, e_2, e_3 \in \mathbb{C}$. We get the following:

$$-y^{3} - by^{2}x - cyxy - dyx^{2}$$

$$+ e_{1}(y^{3} + byxy + cxy^{2} + dx^{2}y)$$

$$+ e_{2}(xy^{2} + bxyx + cx^{2}y + dx^{3})$$

$$+ e_{3}(y^{2}x + byx^{2} + cxyx + dx^{3}) = 0$$

We can then find some equations for the unknowns by comparing co-efficients of like terms:

$$-y^3 + e_1y^3 = 0 \implies e_1 = 1$$

 $y^2x : b = e_3, \ yxy : c = e_1b = b, \ yx^2 : d = e_3b = b^2$

We can't solve for b, but we have c, d in terms of b. Thus $c - b = d - b^2 = 0$ guarantees that dim $I_{(3)} = 3$.

4 Problem 4

The only case we found above gives $f = y^2 + byx + bxy + b^2x^2$ so we get $g = S_y(f, f) = byxy + bxy^2 + b^2x^2y - by^2x - byxy - b^2yx^2$ and taking a reduction

 $h = r_f(g) = bxy^2 + b^2x^2y - b^2yx^2 + b^2yx^2 + b^2xyx + b^3x^3$ and a further reduction

$$r_f(h) = b^2 x^2 y + b^2 x y x + b^3 x^3 - b^2 x y x - b^2 x^2 y - b^3 x^3 = 0$$

Thus the reduced Gröbner basis for I consists of just f. If we draw the graph of reduced words and then take the incidence matrix M, one can easily see that:

$$M = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

So we can see we are basically in part (i) of problem 1. Thus we get that dimension of the *n*-th homogenous component of A is the n+3 Fibonacci number, where $A = \mathbb{C} \langle x, y \rangle / I$.